مطالعه ترکیب شیمیایی شیشه زیست‌فعال دو جزیی 50SiO2-50CaO در مقیاس اتمی با استفاده از شبیه‌سازی دینامیک مولکولی به منظور استفاده در مهندسی بافت استخوان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مواد و متالورژی، دانشکده فنی مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

مقدمه و اهداف: شیشه‌های زیست‌فعال با داشتن قابلیت‌های زیستی منحصربه‌فرد، رویکردی نوین در بهبود روند ترمیم آسیب‌های استخوانی هستند. در این پژوهش، ترکیب شیمیایی شیشه زیست‌فعال دو جزیی 50SiO2-50CaO در مقیاس اتمی با استفاده از شبیه‌سازی دینامیک مولکولی بررسی گردید.
مواد و روش‌ها: ترکیب شیمیایی شیشه زیست‌فعال 50SiO2-50CaO سنتزشده به روش ذوب و آبدهی، از طریق روش دینامیک مولکولی، استفاده از نرم‌افزار لمپس و میدان نیروی لنارد-جونز، شبیه‌سازی و ویژگی‌های ترکیب شیمیایی آن در مقیاس اتمی بررسی شد. 
یافته‌ها: طبق نتایج حاصل از بررسی تابع توزیع شعاعی و تابع توزیع پیوندی، ضمن تایید وجود نظم موضعی و بی‌نظمی ترکیب در فواصل اتمی قبل و بعد از Å 3، اندازه پیوندهای اتمی برای پیوندهای Ca-O ،Si-O و O-O به ترتیب 1/6، 2/45 و 2/26 Å گزارش گردید و نتایج حاصل از تابع توزیع زاویه‌ای، حاکی از وجود زاویه 109 درجه‌ای بین پیوندهای O-Si-O بود. چگالی شیشه در دمای محیط g/cc 2/62 و ضریب نفوذ مولکول‌های SiO2 و CaO در دمای K  1500 به ترتیب 14-10 × 4 و 13-10 × 1/2 m2/s 4 و در دمای K 2000 به ترتیب 13-10 × 16 و 12-10 × 2/2 13-10 m2/s محاسبه شد. رهایش پایدار یون‌های سیلیسیم و کلسیم از سطح نمونه و افزایش pH محلول شبیه‌سازی‌شده بدن تا روز 14 غوطه‌وری و نیز افزایش میزان Q2 تا 41 درصد گزارش گردید. 
نتیجه‌گیری: استفاده از میدان نیرو لنارد-جونز، منجر به پیش‌بینی ویژگی‌های ترکیب شیمیایی شیشه‌های زیست‌فعال با دقت بالا در دماهای مختلف، کاهش زمان و افزایش احتمال موفقیت در پژوهش، قبل از انجام روش‌های تجربی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the Chemical Composition of Two-Component Bioactive Glass 50SiO2-50CaO on an Atomic Scale Using Molecular Dynamics Simulation for Bone Tissue Engineering Applications

نویسندگان [English]

  • Amirhossein Moghanian
  • Arman Tayyebi
Department of Materials Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Introduction: Bioactive glasses, with their unique bioavailability, are a new approach to improve the healing process of bone injuries. In this study, the chemical composition of two-component 50SiO2–50CaO bioactive glass on an atomic scale using molecular dynamics simulation was examined.
Materials and Methods: The chemical composition of bioactive glass 50SiO2-50CaO synthesized by melting and quenching method was simulated through the molecular dynamics method, lammps software and lennard-jones force field, and its properties on the atomic scale was examined.
Results: According to the results of the study of the radial distribution function and the linkage distribution function, while confirming the presence of local order and irregularity of the composition at atomic intervals before and after 3 Å, the size of the atomic bonds for Si-O, Ca-O, and O-O bonds were reported 1.6, 2.45, and 2.65 (Å), respectively, and the results of the angular distribution function indicated the presence of a 109-degree angle between the O-Si-O bonds. The density of glass at ambient temperature was obtained to be 2.62 g/cc, and the penetration coefficient of SiO2 and CaO molecules at 1500 K was calculated to be 4  10-14 and 1.2  10-13 (m2/s), respectively. These values were obtained to be 16  10-13 and 2.2  10-12 (m2/s) at 2000 K, respectively. The stable release of silicon and calcium ions from the sample surface and an increase in the pH of the simulated body fluid (SBF) by 14 days of immersion were reported, along with a 41 percent increase in Q2.
Conclusion: Using the lennard-jones force field leads to the prediction of the chemical composition characteristics of high-precision bioactive glass at different temperatures, reducing time and increasing the likelihood of success in the study, before conducting experimental methods.

کلیدواژه‌ها [English]

  • Two-component bioactive glass 50SiO2-50CaO
  • Simulation of molecular dynamics
  • Lennard-jones force field
  • Penetration coefficient
  • Bone tissue engineering
  1. Sun H, Zheng K, Zhou T, Boccaccini AR. Incorporation of zinc into binary SiO2-CaO mesoporous bioactive glass nanoparticles enhances anti-inflammatory and osteogenic activities. Pharm. 2021;13(12):2124. https://doi.org/10.3390/pharmaceutics13122124
  2. Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact Mater. 2022;18(2):383–398. https://doi.org/10.1016/j.bioactmat.2022.02.010
  3. Ren Z, Tang S, Wang J, Lv S, Zheng K, Xu Y, et al. Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations. Biomater Res. 2025;29(0134):1-20. https://doi.org/10.34133/bmr.0134
  4. Ashrafzadeh Shimi R, Moghanian A, Thaghafi Yazdi M, Kolivand N. Study of the biological properties of 68S bioactive glass stabilized at temperatures of 600–800 °C to improve its biocompatibility in bone tissue engineering therapeutic applications. J Adv Mater Eng (Esteghlal) 2024;43(1):67–80. https://doi.org/10.47176/jame.43.1.1053
  5. Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Mater. 2021;14(18):5440. https://doi.org/10.3390/ma14185440
  6. Haris PI, Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, et al. Binary CaO–SiO2 gel‐glasses for biomedical applications. Biomed Mater Eng. 2004;14(4):467–486. https://doi.org/10.1177/095929892004014004013
  7. Saravanapavan P, Jones JR, Pryce RS, Hench LL. Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J Biomed Mater Res A 2003;66(1):110-119. https://doi.org/10.1002/jbm.a.10532
  8. Elahpour N, Niesner I, Abdellaoui N, Holzapfel BM, Gritsch L, Jallot E, et al. Antibacterial Therapeutic Ions Incorporation into Bioactive Glasses as a Winning Strategy against Antibiotic Resistance. Adv Mater Interfaces 2024;11(32):2400068. https://doi.org/10.1002/admi.202400068
  9. Tilocca A. Structural models of bioactive glasses from molecular dynamics simulations. Proc Math Phys Eng Sci. 2009;465(2104):1003–1027. https://doi.org/10.1098/rspa.2008.0462
  10. Pedone A, Cannillo V, Menziani MC. Toward the understanding of crystallization, mechanical properties and reactivity of multicomponent bioactive glasses. Acta Mater. 2021;213(14):116977. https://doi.org/10.1016/j.actamat.2021.116977
  11. Rani S, Shetty DN. Current advances in data‑driven modeling and computational tools for novel materials. In: Srivastava HM, Arora G, Shah FA, editors. Advances in computational methods and modeling for science and engineering. India: Morgan Kaufmann; 2025. p. 277‑285. https://doi.org/10.1016/B978‑0‑44‑330012‑7.00029‑1
  12. Montazerian M, Zanotto ED, Mauro JC. Model-driven design of bioactive glasses: from molecular dynamics through machine learning. Int Mater Rev. 2020;65(5):297–321. https://doi.org/1080/09506608.2019.1694779
  13. Montazerian M, Wilkinson C, Mauro JC. Molecular dynamics (MD) simulations of bioactive glasses and glass-ceramics. In: Baino F, Kargozar S, editors. Bioactive glasses and glass-ceramics: fundamentals and applications. America: American Ceramic Society; 2022. p. 375–396. https://doi.org/10.1002/9781119724193.ch16
  14. Liu H, Zhao Z, Zhou Q, Chen R, Yang K, Wang Z, et al. Challenges and opportunities in atomistic simulations of glasses: a review. Comptes Rendus Geosci. 2022;354(S1):1-43. https://doi.org/10.5802/crgeos.116
  15. Esmaeili R, Dashtbayazi MR. Simulation of mechanical properties of Al-SiC nanocomposite using molecular dynamics method. J Adv Mater Eng. 2022;32(2):43-54 (In Persian). https://dor.isc.ac/dor/20.1001.1.2251600.1392.32.2.4.5
  16. Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron 2018;99(6):1129-43. https://doi.org/10.1016/j.neuron.2018.08.011
  17. Harrison JA, Schall JD, Maskey S, Mikulski PT, Knippenberg MT, Morrow BH. Review of force fields and intermolecular potentials used in atomistic computational materials research. Appl Phys Rev. 2018;5(3):31104. https://doi.org/10.1063/1.5020808
  18. Lenhard J, Stephan S, Hasse H. On the History of the Lennard-Jones Potential. Ann Phys. 2024;536(6): 2400115. https://doi.org/10.1002/ANDP.202400115
  19. Freitas AA, Santos RL, Colaço R, Horta RB, Lopes J C. From lime to silica and alumina: systematic modeling of cement clinkers using a general force-field. Phys Chem Chem Phys. 2015;17(28):18477–18494. https://doi.org/10.1039/C5CP02823J
  20. Ouldhnini Y, Atila A, Ouaskit S, Hasnaoui A. Atomistic insights into the structure and elasticity of densified 45S5 bioactive glasses. Phys Chem Chem Phys. 2021;23(28):15292–15301. https://doi.org/10.1039/D1CP02192C
  21. Soorani M, Mele E, Christie JK. Structural effects of incorporating Cu+ and Cu2+ ions into silicate bioactive glasses using molecular dynamics simulations. Mater Adv. 2023;4(9):2078–2087. https://doi.org/10.1039/D2MA00872F
  22. Kono Y, Ohara K, Kondo NM, Yamada H, Hiroi S, Noritake F, et al. Experimental evidence of tetrahedral symmetry breaking in SiO2 glass under pressure. Nat Commun. 2022;13(1):1–8. https://doi.org/10.1038/s41467-022-30028-w
  23. Marchin N, Du J. Short and medium range structures of binary GeO2-SiO2 glasses from molecular dynamic simulations. J Non-Cryst Solids. 2024;640(23):123110. https://doi.org/10.1016/j.jnoncrysol.2024.123110
  24. Van Hong N. Structure and Density Heterogeneities of Silica Glass: Insight from Datamining Techniques. Silicon 2024;16(17):6135–6142. https://doi.org/10.1007/s12633-024-03148-9
  25. Al-Hasni B. Effect of Ca/K replacement on the atomic structure of P2O5–K2O–CaO glasses: A molecular dynamics study. Ind J Phys. 2024;98(5):1583–1592. https://doi.org/10.1007/s12648-023-02920-8
  26. Jia B, Li M, Yan X, Wang Q, He S. Structure investigation of CaO-SiO2-Al2O3-Li2O by molecular dynamics simulation and Raman spectroscopy. J Non-Cryst Solids 2019;526(11):119695. https://doi.org/10.1016/j.jnoncrysol.2019.119695
  27. Guo P, Jiao S, Chen F, Min Y, Liu C. Molecular dynamics analysis of the Mg²⁺ structure behavior in SiO₂–CaO–Al₂O₃–MgO slag system. ISIJ Int. 2025;1–44. https://doi.org/10.2355/isijinternational.ISIJINT-2024-286
  28. Greegor RB, Lytle FW, Kortright J, Fischer-Colbrie A. Determination of the structure of GeO2-SiO2 Glasses by EXAFS and X-ray Scattering. J Non-Cryst Solids 1987;89(3):311-25.
  29. Cormier L, Creux S, Galoisy L, Calas G, Gaskell PH. Medium range order around cations in silicate glasses. Chem Geol. 1996;128(1-4):77-91. https://doi.org/10.1016/0009-2541(95)00164-6
  30. Benmore CJ, Bogle R, Wilke SK, Weber R, Neuefeind J, Costa G. The structure of CaO–MgO–Al2O3–SiO2 melts and glasses doped with FeOX–NiO. J Am Ceram Soc. 2024;107(9):6323–6333. https://doi.org/10.1111/jace.19856
  31. Jabraoui H, Malki M, Hasnaoui A, Badawi M, Ouaskit S, Lebegue S, et al. Thermodynamic and structural properties of binary calcium silicate glasses: insights from molecular dynamics-Physical Chemistry Chemical Physics. Phys Chem Chem Phys. 2017;19(29):19083-19093. https://doi.org/10.1039/C7CP03397D
  32. Xiang Y, Du J, Skinner LB, Benmore CJ, Wren AW, Boyd DJ, et al. Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 2013;3(17):5966–5978. https://doi.org/10.1039/C3RA23231J
  33. Wajda A, Sitarz M. Structural and microstructural comparison of bioactive melt-derived and gel-derived glasses from SiO2-CaO binary system. Ceram Int. 2018;44(8):8856-8863. https://doi.org/10.1016/j.ceramint.2018.02.070
  34. Lung CY, Abdalla MM, Chu CH, Yin I, Got SR, Matinlinna JP. A multi-element-doped porous bioactive glass coating for implant applications. Mater. 2021;14(4):961. https://doi.org/10.3390/ma14040961
  35. Tilocca A. Structural models of bioactive glasses from molecular dynamics simulations. Proc R Soc A Math Phys Eng Sci. 2009;465(2104):1003–27. https://doi.org/10.1098/rspa.2008.0462.

 

 

 

تحت نظارت وف ایرانی