تأثیر عملیات سیاه‌کاری بر رفتار خوردگی پوشش‌های نانوکامپوزیتی Ni-P-CNT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد موسسه آموزش عالی نقش جهان، بهارستان، اصفهان

2 دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، شاهین شهر، اصفهان

چکیده

مقدمه و اهداف: در این پژوهش با هدف بهبود خواص پوشش الکترولس Ni-P، به ویژه در کاربردهای اپتیکی، از نانولوله‌های کربنی استفاده شده و تأثیر درصد نانولوله کربنی، بر رفتار خوردگی پوشش کامپوزیتی  Ni-P-CNT مورد بررسی قرار گرفته است.
مواد و روش‌ها: پس از فرایند پوشش‌دهی الکترولس، پوشش‌ها در محلول اسید نیتریک سیاه‌کاری شدند. مورفولوژی و آنالیز عنصری پوشش‌ها، به ترتیب توسط میکروسکوپ الکترونی روبشی و طیف‌سنجی توزیع انرژی ارزیابی شد. همچنین آزمون‌های الکتروشیمیایی نظیر پلاریزاسیون پتانسیودینامیک و طیف‌سنجی امپدانس الکتروشیمیایی جهت بررسی رفتار خوردگی مورد استفاده قرار گرفتند.
یافته‌ها: نتایج نشان دادند که با افزایش درصد نانولوله کربنی در حمام از 0 تا 2 گرم بر لیتر، میزان هم‌رسوبی نانولوله کربنی در پوشش افزایش‌ یافته و در مقادیر بالاتر مشارکت نانولوله کربنی در پوشش، روند کاهشی داشته است. همچنین مشاهده شد که پوشش کامپوزیتی سیاه‌کاری‌شده حاوی 1/5 گرم بر لیتر نانولوله کربنی ، بیشترین میزان مقاومت به خوردگی را در بین تمامی پوشش‌های کامپوزیتی داشته است. این رفتار بعلت هم‌رسوبی بهینه نانولوله‌های کربنی در زمینه Ni-P و متعاقباً درصد عیوب سطحی کمتر پس از فرایند سیاه‌کاری بوده است.
نتیجه‌گیری: در این پژوهش، تاثیر هم‌رسوبی نانولوله‌های کربنی بر رفتار خوردگی ارزیابی شد. نتایج نشان‌دهنده بهبود رفتار خوردگی پوشش کامپوزیتی سیاه‌کاری‌شده، در مقدار بهینه 1/5 گرم بر لیتر نانولوله کربنی، در زمینه پوشش Ni-P بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Blackening Treatment on the Corrosion Behavior of Ni-P-CNT Nanocomposite Coatings

نویسندگان [English]

  • Farideh Tabatabaei 1
  • Shahram Alirezaei 2
  • Mehdi Bagheri 1
1 Department of Materials Engineering, Naqsh-Jahan Institute of Higher Education, Baharestan, Isfahan, Iran
2 Department of Materials Engineering, Malek-Ashtar University of Technology, Shahin-Shahr, Isfahan, Iran
چکیده [English]

Introduction and objectives: In this research, carbon nanotubes (CNTs) were used to optimize the properties of Ni-P electroless coating in optical applications and the effect of CNT content on the corrosion behavior of Ni-P-CNT composite coating was investigated.
Materials and methods: The coatings were blackened in nitric acid solution after electroless coating deposition. The morphology and elemental analysis of the coatings were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. Also, the electrochemical tests such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to investigate the corrosion behavior.
Results: The results declared that increasing CNT in the plating bath from 0 to 2 g/l led to increase in CNT content in the composite coating, while the co-deposition of CNT was decreased in greater values. It was also found that the blackened composite coating containing 1.5 g/l CNT had the highest corrosion resistance among all the composite coatings. This behavior can be the result of the optimum co-deposition of carbon nanotubes in Ni-P matrix and subsequently lower amounts of defects after blackening process.
Conclusions: In this research, the effect of co-deposition of carbon nanotubes on the corrosion behavior was studied. The results indicated that the corrosion resistance of blackened composite coating was improved in an optimum content ~1.5 g/l of carbon nanotube in the Ni-P matrix.

کلیدواژه‌ها [English]

  • Electroless
  • Carbon Nanotube
  • Blackening
  • Corrosion Resistance
  • Composite
  1. Chintada V, Ramji K, Bahubalendruni MVAR. State of art review on nickel-based electroless coatings and materials. J Bio Tribo-Corr. 2021;7(134):1-14. https://doi.org/10.1007/s40735-021-00568-7
  2. Xing F, Zhao B, Shi W. Study on tunable fabrication of the ultra-black Ni–P film and its blacking mechanism. Electrochim Acta. 2013;100:157-163. https://doi.org/10.1016/j.electacta.2013.03.145
  3. Saxena V, Rani RU, Sharma AK. Studies on ultra-high solar absorber black electroless nickel coatings on aluminum alloys for space application. Surf Coat Technol. 2006;201:855–862. https://doi.org/10.1016/j.surfcoat.2005.12.050
  4. Domínguez AS, Bueno JJ, Torres I, López MLM. Characterization and corrosion resistance of electroless black Ni-P coatings of double black layer on carbon steel. Surf Coat Technol. 2017;326:192–199. Https://doi.org/10.1016/j.surfcoat.2017.07.044
  5. Carnahan D, Morgan T. Carbon nanotube-based black coatings for optical and infrared applications. 2021:38-44.
  6. Rossi J, Uotila J, Sharma S, Laurila T, Teissier R, Baranov A, Ikonen E, Vainio M. Photoacoustic characteristics of carbon-based infrared absorbers. Photoacoustics. 2021;23:1-10. https://doi.org/10.1016/j.pacs.2021.100265
  7. Khalid AH, Abdulsattar MA, Hussain ZT, Jabor AA. The effect of different multiwall carbon nanotubes concentration on morphology, optical, and electrical properties used as flexible anode. J Phys. 2020;1660:1-9. https://doi.org/10.1088/17426596/1660/1/012054
  8. Alishahi M, Monirvaghefi SM, Saatchi A, Hosseini SM. The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni–P–CNT composite coating. Appl Surf Sci. 2012;258:2439-2446. https://doi.org/10.1016/j.apsusc.2011.10.067
  9. Ashrafizadeh F, Bagheri M, Hosseini M. Comparative study on optical properties of black nickel coatings and color anodizing for solar absorber. In: Optical Interference Coatings Technical Digest; 2013 Jun 16–21; Whistler, Canada. Washington (DC): OSA; 2013. p. MC.3. https://doi.org/10.1364/OIC.2013.MC.3
  10. Li Y, Yang P, Xiao Y, Liu Y, Chen Y, Yang H, et al. Effect of carbon nanotube content and annealing temperature on corrosion performance of carbon nanotube/Ni composite layer. Mater Res Express 2024;11(4):046503. https://doi.org/10.1088/2053-1591/ad3614. Yang Z, Xu H, Shi YL, Li M, Huang Y, Li HL. The fabrication and corrosion behavior of electroless Ni–P-carbon nanotube composite coatings. Mater Res Bull. 2005;40(6):1001-1009. https://doi.org/10.1016/j.materresbull.2005.02.015
  11. Shi YL, Yang Z, Xu H, Li MK, Li HL. Preparation of electroplated Ni-P-ultrafine diamond, Ni-P-carbon nanotubes composite coatings and their corrosion properties. J Mater Sci. 2004;39:5809-5815. https://doi.org/10.1023/B:JMSC.0000040093.31790.d3
  12. Meshram AP, Punith-Kumar MK, Srivastava C. Enhancement in anti-corrosive behavior of Ni-P coatings by incorporation of carbon nanotubes. J Mater Eng Perform. 2022;31(2):1573-1584. https://doi.org/10.1007/s11665-021-06260-8
  13. Gao Z, Zhao S, Wang Y, Wang X, Wen L. Corrosion behavior and wear resistance characteristics of electroless Ni-P-CNTs plating on carbon steel. Int J Electrochem Sci. 2015;10:637-648. https://doi.org/10.1016/S1452-3981(23)05019-8
  14. Rudnik E. Black nickel coatings: from plating techniques to applications. Coatings. 2024;14(1588): 1-21. https://doi.org/10.3390/coatings14121588
  15. Razmjoo-Khollari MA, Ghorbani M, Afshar A. Fabrication and characterization of TiO2 deposited black electroless Ni-P solar absorber. Appl Surf Sci. 2019;496:143632. https://doi.org/10.1016/j.apsusc.2019.143632
  16. Ebrahimi F, Ashrafizadeh F, Hosseini-Najafabadi M, Shirmohammadi-Yazdi S. Formation of ultra-black surface on aluminum by a duplex process for optical applications. In: Proceedings of the 4th International Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM); 2013 Nov; Tehran, Iran. p. 1–6.
  17. Hosseini-Najafabadi M, Ashrafizadeh F, Monirvaghefi M. Optimization of nanostructured black electroless Ni–P coating for solar absorber. Int J Mod Phys Conf Ser. 2012;5:670–8. https://doi.org/10.1142/S2010194512002619
  18. Abbasi-Amandi A, Parvini-Ahmadi N, Ojaghi-Ilkhchi M, Alinezhadfar M. Physical and electrochemical behavior of black nickel coatings in presence of KNO3 and imidazole additives. J Electroanalyt Chem. 2021;893: 115310. https://doi.org/10.1016/j.jelechem.2021.115310
  19. Liu WL, Hsieh SH, Tsai TK, Chen WJ, Wu SS. Temperature and pH dependence of the electroless Ni-P deposition on silicon. Thin Solid Films 2006;510 (1-2):102-106. https://doi.org/10.1016/j.tsf.2005.12.203
  20. Shozib IA, Ahmad A, Abdul-Rani AM, Beheshti MA, Abdu-Aliyu AA. A review on the corrosion resistance of electroless Ni-P based composite coatings and electrochemical corrosion testing methods. Corr Rev. 2022;40(1):1-37. https://doi.org/10.1515/corrrev-2020-0091.
  21. Firoozbakht M, Monirvaghefi SM, Niroumand B. Electroless composite coating of Ni-P-carbon nanotubes on magnesium powder. J Alloys Compd. 2011;509:496-502. https://doi.org/10.1016/j.jallcom.2011.02.023
  22. Yucheng W, Rong R, Fengtao W, Zaoshi Y, Tugen W, Xiaoye H. Preparation and characterization of Ni-Cu-P/CNTs quaternary electro- less composite coating. Mater Res Bull. 2008;43(12):3425-3432. https://doi.org/10.1016/j.materresbull.2008.02.019
  23. Zhao Q, Liu Y. Electroless Ni-Cu-P-PTFE composite coatings and their anticorrosion properties. Surf Coat Technol. 2005;200:2510-2514. https://doi.org/10.1016/j.surfcoat.2004.06.011
  24. Gul H, Algul H, Akyol A, Uysal M, Alp A. Evaluation of wear and corrosion behavior of electroless Ni-B-P/CNT composite coatings on aluminum surfaces. Diamond Related Mater. 2023; 137: 1-13. https://doi.org/10.1016/j.diamond.2023.110075
  25. Shcherbina E, Abrashov A, Grigorian N, Aleshina V, Vagramyan T, Men-Shikov V. Deposition of ultra-black nickel phosphorus coatings. In: Proceedings of METAL 2020 – 29th International Conference on Metallurgy and Materials; 2020 May; Brno, Czech Republic.
  26. Alishahi M, Hosseini SM, Monirvaghefi SM, Saatchi A. Synthesis and passivation behavior of electroless Ni–P-CNT composite coating. Mater Corr. 2013;64(3):212-217. https://doi.org/10.1002/maco.201106136
  27. Yazdani S, Mahboubi F, Tima R, Sharifahmadian O. Effect of carbon nanotube concentration on the corrosion behavior of electroless Ni-B-CNT coating. J Mater Eng Perform. 2019;28:3446-3459. https://doi.org/10.1007/s11665-019-04155-3
  28. Liu Y, Beckett D, Hawthorne D. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films. Appl Surf Sci. 2011;257:4486-4494. https://doi.org/10.1016/j.apsusc.2010.12.105
  29. Silva LM, Fernandes KC, Faria LAD, Boodts JFC. Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides: Ti/ (Ru + Ti + Ce)O2-system. Electrochim Acta 2004;49:4893-4906. https://doi.org/10.1016/j.electacta.2004.05.043
  30. Daneshvar F. Carbon nanotube/metal corrosion issues for nanotube coatings and inclusions in a matrix. Appl Phys. 2018;1812:03815. Https://doi.org/ 10.48550/arXiv.1812.03815.

 

 

تحت نظارت وف ایرانی