بررسی اثر عوامل کمپلکس‌ساز مونواتانول آمین و اگزالیک اسید بر خواص و عملکرد فوتوکاتالیستی اکسید روی در تخریب سریع رنگ متیلن بلو

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد و متالورژی دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

مقدمه و اهداف: اکسید روی (ZnO)، به دلیل جذب مناسب نور و کارایی بالا در تجزیه آلاینده‌های آلی، گزینه‌ای مطلوب به شمار می‌رود؛ هرچند محدودیت‌هایی مانند جذب کم نور مرئی و بازترکیب سریع بار دارد. راهکارهایی چون دوپ‌کردن، ایجاد پیوندهای ناهمگون برای بهبود عملکرد آن بررسی شده‌اند. در این پژوهش، تأثیر اسید اگزالیک و مونواتانول آمین به‌عنوان کمپلکس‌کننده بر خواص فوتوکاتالیستی ZnO بررسی شد.
مواد و روش‌ها: در این مطالعه اکسید روی، به روش سل-ژل سنتز شد و تأثیر اسید اگزالیک و مونواتانول، به‌‌عنوان دو عامل کمپلکس‌کننده بر خواص فوتوکاتالیستی آن مورد بررسی قرار گرفت.
یافته‌ها: تصاویر میکروسکوپ الکترونی روبشی نشان دادند که نمونه ZnO-MEA دارای توزیع ذرات یکنواخت‌تر و سطح صاف‌تر نسبت به ZnO-Oxalic است. آنالیز تبدیل فوریه فروسرخ حضور گروه‌های عاملی سطحی بیشتری را در نمونه ZnO-MEA نشان داد که از باقی‌ماندن مونواتانول آمین ناشی می‌شود. طیف‌سنجی UV-Vis و نمودار تائوک نشان داد که ZnO-MEA دارای شکاف انرژی کمتری (eV 3/08) نسبت به ZnO-Oxalic (eV 3/18) است که ناشی از اندازه ذرات بزرگ‌تر و وجود نقص‌های ساختاری کمتر است. 
نتیجه‌گیری: در این مطالعه، ZnO-MEA  با اندازه کریستالیت ۴۲ نانومتر (در برابر ۳۵ نانومتر برای ZnO-Oxalic) و ساختاری یکنواخت‌تر سنتز شد. شکاف انرژی ZnO-MEA نسبت به ZnO-Oxalic کمتر بود و موجب جذب بهتر نور شد. همچنین شدت طیف سنجی فوتولومینسانس پایین‌تر در ZnO-MEA، نشان‌دهنده بازترکیب کمتر الکترون-حفره بود. این عوامل موجب شدند ZnO-MEA در آزمون تخریب متیلن بلو، با کاهش سریع‌تر غلظت رنگ و شیب بالاتر نمودار، عملکرد فوتوکاتالیستی بهتری نسبت به ZnO-Oxalic داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of the Complexing Agents Monoethanolamine and Oxalic Acid on the Properties and Photocatalytic Performance of Zinc Oxide in the Rapid Degradation of Methylene Blue Dye

نویسندگان [English]

  • Mohammad Tashakkori Masouleh
  • Masood Hasheminiasari
  • Rouholah Ashiri
School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Introduction and Objectives: Zinc oxide (ZnO) is considered as a promising material due to its efficient light absorption and high performance in the degradation of organic pollutants. However, it faces limitations such as poor visible light absorption and rapid charge carrier recombination. To overcome these challenges, approaches such as doping and heterojunction formation have been investigated to enhance its photocatalytic performance. In this study, the effect of oxalic acid and monoethanolamine (MEA) as complexing agents on the photocatalytic properties of ZnO was examined.
Materials and Methods: In this study, zinc oxide was synthesized by the sol–gel method, and the effect of oxalic acid and monoethanolamine as two complexing agents on its photocatalytic properties was investigated.
Results: scanning electron microscope images showed that the ZnO-MEA sample exhibited a more uniform particle distribution and smoother surface compared to ZnO-Oxalic. Fourier transform infrared analysis revealed the presence of more surface functional groups in the ZnO-MEA sample, attributed to residual monoethanolamine. UV-Vis spectroscopy and Tauc plots indicated that ZnO-MEA had a lower band gap energy (3.08 eV) than ZnO-Oxalic (3.18 eV), which is attributed to larger particle size and fewer structural defects.
Conclusion: In this study, ZnO-MEA with a crystallite size of 42 nm (as opposed to 35 nm for ZnO-Oxalic) and uniform structure was synthesized. Its energy gap was lower than ZnO-Oxalic, resulting in better light absorption. Moreover, the lower Photoluminescence spectroscopy intensity in ZnO-MEA indicated less electron–hole recombination. These factors led ZnO-MEA, in the methylene blue degradation test, to exhibit better photocatalytic performance than ZnO-Oxalic, with a faster decrease in dye concentration and a steeper slope in the plot.

کلیدواژه‌ها [English]

  • Photocatalyst
  • Zinc oxide
  • Sol-gel
  • Oxalic acid
  • Monoethanolamine
  • Methylene blue
  1. Ameta R, Ameta SC. Photocatalysis: principles and applications. 1st ed. Boca Raton: CRC Press; 2016. https://doi.org/10.1201/9781315372396
  2. Abdullah F, Bakar NA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J Hazard Mater. 2022;424:127416. https://doi.org/10.1016/j.jhazmat.2021.127416
  3. Javazm MT, Hasheminiasari M, Masoudpanah S, Nasrinpour H, Sarkar T, Aslibeiki B. Enhancment of cycling performance and rate capability of Li3V2 (PO4)3 cathode material by doping Ca2+ and Sr2+ cations. J Energy Storage 2025;122:116735. http://dx.doi.org/10.2139/ssrn.5087129
  4. Hassanzadeh Tabrizi SA, Aminsharei F. Alumina Surface Coating with Zinc Oxide Nanostructures by Hydrothermal Method for Removal of Organic Pollutants from Water. J Adv Mater Eng. 2024;42(4): 33-44. https://doi.org/47176/jame.42.4.1038
  5. Kumar SG, Kavitha R. Lanthanide ions doped ZnO based photocatalysts. Sep Purif Technol. 2021;274: 118853. https://doi.org/10.1016/j.seppur.2021.118853
  6. Pavel M, Anastasescu C, State R-N, Vasile A, Papa F, Balint I. Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of practical application potential for water and air cleaning. Catalysts 2023;13(2):380. https://doi.org/10.3390/catal13020380
  7. Wang L, Yu J. Principles of photocatalysis. Interface science and technology. 35: Elsevier; 2023. p. 1-52. https://doi.org/10.1016/B978-0-443-18786-5.00002-0
  8. Sun X, Jiang S, Huang H, Li H, Jia B, Ma T. Solar energy catalysis. Angew Chem. 2022;134(29): e202204880. https://doi.org/10.1002/anie.202204880
  9. O’Brien CJ, Berry Y, Chen CB, Zhu M. Development of a General Procedure To Access Recoverable Solid-Supported Photocatalysts for Use in Organic Synthesis. J Org Chem. 2023;88(13):8709-13. https://doi.org/10.1021/acs.joc.3c00588
  10. Zaleska-Medynska A. Metal oxide-based photocatalysis: fundamentals and prospects for application: Elsevier; 2018. https://doi.org/10.1016/C2016-0-01872-7
  11. Takata T, Pan C, Domen K. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater. 2015;16(3):033506. https:// doi.org/10.1088/1468-6996/16/3/033506
  12. Xiong YT, Liu WX, Tian L, Qin PL, Chen XB, Ma L, et al. Broad light absorption and multichannel charge transfer mediated by topological surface state in CdS/ZnS/Bi2Se3 nanotubes for improved photocatalytic hydrogen production. Adv Funct Mater. 2024;34(46): 2407819. https://doi.org/10.1002/adfm.202407819
  13. Bharathi P, Harish S, Archana J, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, et al. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: The synergistic effect of photocatalysis for the mineralization of organic pollutant in water. Appl Surf Sci. 2019;484:88 91-4. https://doi.org/10.1016/j.apsusc.2019.03.131
  14. Kumar SG, Rao KK. Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 2015;5(5):3306-51. https://doi.org/10.1039/C4RA13299H
  15. Zhang B, Sun B, Liu F, Gao T, Zhou G. TiO2-based S-scheme photocatalysts for solar energy conversion and environmental remediation. Sci China Mater. 2024;67(2):424-43. https://doi.org/10.1007/s40843-023-2754-8
  16. Ferreira V, Santos P, Silva C, Azenha M. Latest developments on TiO2-based photocatalysis: a special focus on selectivity and hollowness for enhanced photonic efficiency. Appl Catal A 2021;623:118243. https://doi.org/10.1016/j.apcata.2021.118243
  17. Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J Alloys Compd. 2021;863:158734. https://doi.org/10.1016/j.jallcom.2021.158734
  18. Azimi-Fouladi A, Hasanzadeh-Tabrizi SA. Investigation of Photocatalytic Properties of TiO2 and TiO2-4wt.%CdO Nanoparticles for Degradation of Methylene Blue. J Adv Mater Eng. 2022;41(2):37-50. https://doi.org/10.47176/jame.41.2.24451
  19. Alam U, Khan A, Ali D, Bahnemann D, Muneer M. Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 2018;8(31):17582-94. https://doi.org/10.1039/C8RA01638K
  20. Kanwal F, Javed T, Hussain F, Wasim M, Batool M. Enhanced dye photodegradation through ZnO and ZnO-based photocatalysts doped with selective transition metals: a review. Environ Technol Rev. 2024;13(1):754-93. https://doi.org/10.1080/21622515.2024.2426725
  21. Kegel J, Povey IM, Pemble ME. ZnO nanorod-arrays as photo-(electro) chemical materials: Strategies designed to overcome the material's natural limitations. J Electrochem Soc. 2017;165(4):H3034. https://doi.org/ 1149/2.0051804jes
  22. Li Y, Sánchez-Montes I, Yang L, El-Din MG, Zhang X. A novel approach for immobilizing Ag/ZnO nanorods on a glass substrate: Application in solar light-driven degradation of micropollutants in water. Water Res. 2025;268:122736. https://doi.org/10.1016/j.watres.2024.122736
  23. Kadir A, Qomariyah L, Ogi T, Atmajaya H, Putra NR, Sunarno SDAM, et al. Cost-effective and rapid synthesis of ZnO photocatalyst with the high performance of dye photodegradation as application in minimizing chemical risks used in industry. J Solgel Sci Technol. 2023;107(3):711-24. https://doi.org/10.1007/s10971-023-06147-1
  24. Kegel J, Povey IM, Pemble Tailoring Zinc Oxide Nanorod-Arrays for Photo-(electro) Chemical Applications. ECS Trans. 2017;77(4):43. https://doi.org/10.1149/07704.0043ecst
  25. Paganini MC, Giorgini A, Gonçalves NP, Gionco C, Prevot AB, Calza P. New insight into zinc oxide doped with iron and its exploitation to pollutants abatement. Catal Today 2019;328:230-4. https://doi.org/10.1016/j.cattod.2018.10.054
  26. Puri N, Gupta A. Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: A review. Environ Res. 2023;227:115786. https://doi.org/10.1016/j.envres.2023.115786
  27. Majumder A, Gupta AK. Enhanced photocatalytic degradation of 17β-estradiol by polythiophene modified Al-doped ZnO: optimization of synthesis parameters using multivariate optimization techniques. J Environ Chem Eng. 2020;8(6):104463. https://doi.org/10.1016/j.jece.2020.104463
  28. Al-Zahrani SA, Khedr AM, Alturki AM, El-Yazeed WSA. Integration of 2D graphene oxide/zinc oxide nanohybrid for enhancement adsorption and photodegradation of organic pollutants. J Mol Liq. 2024;395:123956. https://doi.org/10.1016/j.molliq.2024.123956
  29. Medina-Ramírez I, Hernández-Ramírez A, Maya-Trevino ML. Synthesis methods for photocatalytic materials. In: Hernández-Ramírez A, Medina-Ramírez I, editors. Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications. Cham: Springer; 2015. p. 69-102. https://doi.org/10.1007/978-3-319-10999-2
  30. Rezapour M, Talebian N. Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Mater Chem Phys. 2011;129(1-2):249-55. https://doi.org/10.1016/j.matchemphys.2011.04.012
  31. Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978. https://doi.org/10.1103/PhysRev.56.978
  32. Šarić A, Despotović I, Štefanić G, Dražić G. The influence of ethanolamines on the solvothermal synthesis of zinc oxide: A combined experimental and theoretical study. ChemistrySelect 2017;2(31):10038-49. https://doi.org/10.1002/slct.201701692
  33. Sagar P, Shishodia P, Mehra R. Influence of pH value on the quality of sol–gel derived ZnO films. Appl Surf Sci. 2007;253(12):5419-24. https://doi.org/10.1016/j.apsusc.2006.12.026
  34. Xu Y, Liu P, Zhang Y. Mid-infrared spectroscopy of hemispherical water droplets. Spectrochim Acta - A: Mol Biomol Spectrosc. 2022;264:120256. https://doi.org/10.1016/j.saa.2021.120256
  35. Varrica D, Tamburo E, Vultaggio M, Di Carlo I. ATR–FTIR spectral analysis and soluble components of PM10 and PM5 particulate matter over the urban area of palermo (Italy) during normal days and saharan events. Int J Environ Res Public Health 2019;16(14):2507. https://doi.org/10.3390/ijerph16142507
  36. Campanale C, Savino I, Massarelli C, Uricchio VF. Fourier transform infrared spectroscopy to assess the degree of alteration of artificially aged and environmentally weathered microplastics. Polymers 2023;15(4):911. https://doi.org/10.3390/polym15040911
  37. Gültekin D, Akbulut H. Raman studies of ZnO products synthesized by solution based methods. Acta Phys Pol A 2016;129(4):803-5. http://doi.org/10.12693/APhysPolA.129.803
  38. Karuppasamy P, Nisha NRN, Pugazhendhi A, Kandasamy S, Pitchaimuthu S. An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J Environ Chem Eng. 2021;9(4):105254. https://doi.org/10.1016/j.jece.2021.105254
  39. Ahmad I. Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: efficient photocatalysts for the degradation of organic pollutants. Sep Purif Technol. 2020;251:117372. https://doi.org/10.1016/j.seppur.2020.117372
  40. Mondal P. Effect of Oxygen vacancy induced defect on the optical emission and excitonic lifetime of intrinsic ZnO. Opt Mater. 2019;98:109476. https://doi.org/10.1016/j.optmat.2019.109476
  41. Banerjee D, Banerjee P, Kar AK. Insights into the impact of photophysical processes and defect state evolution on the emission properties of surface-modified ZnO nanoplates for application in photocatalysis and hybrid LEDs. Phys Chem Chem Phys. 2022;24(4):2424-40. https://doi.org/10.1039/D1CP05110E
  42. Arakha M, Roy J, Nayak PS, Mallick B, Jha S. Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radic Biol Med. 2017;110:42-53. https://doi.org/10.1016/j.freeradbiomed.2017.05.015
  43. Marotti R, Giorgi P, Machado G, Dalchiele E. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater. 2006;90(15):2356-61. https://doi.org/10.1016/j.solmat.2006.03.008
  44. Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 2016;88:428-48. https://doi.org/10.1016/j.watres.2015.09.045
  45. Dien ND, Ha PTT, Vu XH, Trang TT, Giang TDT, Dung NT. Developing efficient CuO nanoplate/ZnO nanoparticle hybrid photocatalysts for methylene blue degradation under visible light. RSC Adv. 2023;13(35):24505-18. https://doi.org/10.1039/D3RA03791F
  46. Kumar V, Swart H, Ntwaeaborwa O, Kroon R, Terblans J, Shaat S, et al. Origin of the red emission in zinc oxide nanophosphors. Mater Lett. 2013;101:57-60. https://doi.org/10.1016/j.matlet.2013.03.073
  47. Antony A, Poornesh P, Kityk I, Ozga K, Jedryka J, Myronchuk G, et al. Defect engineering, microstructural examination and improvement of ultrafast third harmonic generation in GaZnO nanostructures: a study of e-beam irradiation. Phys Chem Chem Phys. 2020;22(7):4252-65. https://doi.org/10.1039/C9CP06323D
  48. Mahdavi R, Ashraf Talesh SS. The crystal structures, morphological, kinetics and photocatalytic activity studies of Al/Ca co-doped ZnO nanoparticles via the sol–gel process. Int J Environ Anal Chem. 2022;102(18):6684-98. https://doi.org/10.1080/03067319.2020.1817419
  49. Yang C, Li Q, Tang L, Bai A, Song H, Yu Y. Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity. J Mater Sci. 2016;51(11):5445-59. https://doi.org/10.1007/s10853-016-9848-0
  50. Wang Y, Zhang X, Hou C. Facile synthesis of Al-doping 1D ZnO nanoneedles by co-precipitation method for efficient removal of methylene blue. Nano-Struct Nano-Objects 2018;16:250-7. https://doi.org/10.1016/j.nanoso.2018.07.001
  51. Isai KA, Shrivastava VS. Photocatalytic degradation of methylene blue using ZnO and 2% Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl Sci. 2019;1:1-11. https://doi.org/10.1007/s42452-019-1279-5
  52. Soto-Robles C, Nava O, Cornejo L, Lugo-Medina E, Vilchis-Nestor A, Castro-Beltrán A, et al. Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. J Mol Struct. 2021;1225:129101. https://doi.org/10.1016/j.molstruc.2020.129101
  53. Balcha A, Yadav OP, Dey T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ Sci Pollut Res. 2016;23(24):25485-93. https://doi.org/10.1007/s11356-016-7750-6
  54. Khan H, Habib M, Khan A, Boffito DC. A modified sol-gel synthesis to yield a stable Fe3+/ZnO photocatalyst: Degradation of water pollutants and mechanistic insights under UV and visible light. J Environ Chem Eng. 2020;8(5):104282. https://doi.org/10.1016/j.jece.2020.104282

 

 

تحت نظارت وف ایرانی