- Lin Y, Ruze R, Zhang R, Tuergan T, Wang M, Tulahong A, et al. Immunometabolic targets in CD8+ T Cells within the tumor microenvironment of hepatocellular carcinoma. Liver Cancer 2024;14:474-496.http://doi.org/1159/000542578
- Jia J, Li H, Huang Z, Yu J, Zheng Y, Cao B. Comprehensive immune landscape of lung-resident memory CD8+ T cells after influenza infection and reinfection in a mouse model. Front Microbiol. 2023;14:1184884.http://doi.org/3389/fmicb.2023.1184884
- Martinez M, Moon EK. CAR T Cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10(128):1-21. http://doi.org/3389/fimmu.2019.00128
- Nasser Gholijani GD, Fatemeh Rezaei Kahmini. T cell-Intrinsic peripheral tolerance: A checkpoint target to treat autoimmunity. J Cell Immunol. 2024;6:87-97. https://doi.org/10.33696/immunology.6.194
- van de Sandt CE, McQuilten HA, Aban M, Nguyen THO, Valkenburg SA, Grant EJ, et al. Gradual changes within long-lived influenza virus-specific CD8+T cells are associated with the loss of public TCR clonotypes in older adults. EBioMedicine 2025;115:105697.http://doi.org/1016/j.ebiom.2025.105697
- van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 2020;20(4):218-32. http://doi.org/3389/fimmu.2022.894919
- Monsef R, Salavati-Niasari M. Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. Journal of Colloid and Interface Science. 2022;613:1-14.
https://doi.org/10.1016/j.jcis.2022.01.039
- Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8+T cells: Cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med. 2025;23(1):341. http://doi.org/1186/s12967-025-06291-y
- Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, et al. A highly sensitive flow cytometric approach to detect rare antigen-specific T Cells: development and comparison to standard monitoring tools. Cancers (Basel) 2023;15(3):574. http://doi.org/3390/cancers15030574
- Monsef R, Salavati-Niasari M. Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosens Bioelectron. 2021; 178:113017. https://doi.org/10.1016/j.bios.2021.113017
- Davtalab-Ghazimahalleh M, Hosseini-Golgoo SM, Zamani H. Manufacturing and characterization of a potentiometric sensor highly sensitive to NO2 gas, based on K2CO3/Al2O3 composite material. J Adv Mater Eng. 2024;43(4):69-84.
https://doi.org/10.47176/jame.43.4.1087
- Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev. 2023;52(16):535.2-72.
http://doi.org/10.1039/d2cs00928e
- Ravikiran YT, Chethan B, Prasad V, Raj Prakash HG, Prashantkumar M, Tiwari SK, et al. Polypyrrole/reduced graphene oxide composite as a low-cost novel sensing material for fast-response humidity sensor. Mater Chem Phys. 2023;303:127800. http://doi.org/1016/j.matchemphys.2023.127800
- Goudarzi M, Salavati-Niasari M, Motaghedifard M, Hosseinpour-Mashkani SM. Semiconductive Tl2O3 nanoparticles: Facile synthesis in liquid phase, characterization and its applications as photocatalytic substrate and electrochemical sensor. J Mol Liq. 2016;219:720-7. https://doi.org/10.1016/j.molliq.2016.04.007
- Carinelli S, Xufre Ballesteros C, Marti M, Alegret S, Pividori MI. Electrochemical magneto-actuated biosensor for CD4 count in AIDS diagnosis and monitoring. Biosens Bioelectron. 2015;74:974-80. https://doi.org/ 10.1016/j.bios.2015.07.053
- Baladi M, Teymourinia H, Dawi EA, Amiri M, Ramazani A, Salavati-Niasari M. Electrochemical determination of imatinib mesylate using TbFeO3/g-C3N4 nanocomposite modified glassy carbon electrode. Arab J Chem. 2023;16:104963. https://doi.org/1016/j.arabjc.2023.104963
- Bialas K, Tay HM, Petchakup C, Salimian R, Ward SG, Lindsay MA, et al. Electrochemical microfluidic biosensor for the detection of CD4(+) T cells. Microsyst Nanoeng. 2025;11(63):1-13.
https://doi.org/10.1038/s41378-025-00893-8
- Yadegari A, Omidi M, Yazdian F, Zali H, Tayebi L. An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene–gold nanostructures. RSC Adv. 2017;7(4):2365-72. http://doi.org/1039/c6ra25938c
- Ghasemi Z, Kharaziha M, Raeissi K, Karimzadeh F. Fabrication and characterization of a non-enzymatic electrochemical sensor based on molecularly imprinted polymer for glucose monitoring in medical J Adv Mater Eng. 2025;45(1):1-15. https://doi.org/10.47176/jame.45.1.1110
- Hasani A, Baniadam M, Maghrebi M. Novel approach for electrochemical functionalization of graphene with surfactant. J Adv Mater Eng. 2022;35(4):27-38. http://doi.org/18869/acadpub.jame.35.4.27
- Oleneva E, Khaydukova M, Ashina J, Yaroshenko I, Jahatspanian I, Legin A, et al. A Simple procedure to assess limit of detection for multisensor systems. Sensors 2019;19(6):1359.
http://doi.org/10.3390/s19061359
- Ganguly A, Ebrahimzadeh T, Zimmern PE, De Nisco NJ, Prasad S. Label free, lateral flow prostaglandin E2 electrochemical immunosensor for urinary tract infection diagnosis. Chemosensors 2021;9(9):271. http://doi.org/3390/chemosensors9090271
- Parayangattil Jyothibasu J, Chen MZ, Lee RH. Polypyrrole/Carbon nanotube freestanding electrode with excellent electrochemical properties for high-performance all-solid-state supercapacitors. ACS Omega 2020;5(12):6441-51.
http://doi.org/10.1021/acsomega.9b04029
- Seema S, Prasad MVNA. Dielectric Spectroscopy of Nanostructured Polypyrrole-NiO Composites. J Polym. 2014;2014:1-5.
http://doi.org/10.1155/2014/950304
- Wang X, Yang C, Li H, Liu P. Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochimica Acta 2013;111:729-37. https://doi.org/10.1016/j.electacta.2013.08.145
- Zine PC, Narwade VN, Patil SS, Qureshi MT, Tsai M-L, Hianik T, et al. Sensitive electrochemical sensor based on amino-functionalized graphene oxide/polypyrrole composite for detection of Pb2+ Chemosensors 2025;13(2):34.
http://doi.org/10.3390/chemosensors13020034
- Yang Y, Yang X, Yang W, Li S, Xu J, Jiang Y. Porous conducting polymer and reduced graphene oxide nanocomposites for room temperature gas detection. RSC Adv. 2014;4(80):42546-53.
http://doi.org/10.1039/c4ra06560c
- Hu J, Li Y, Gao G, Xia S. A Mediated BOD biosensor based on immobilized B. subtilis on three-dimensional porous Graphene-Polypyrrole composite. Sensors (Basel) 2017;17(11):2594.
http://doi.org/10.3390/s17112594
- Wang M, Zhang D, Yang A, Wang D, Zong X. Fabrication of polypyrrole/graphene oxide hybrid nanocomposite for ultrasensitive humidity sensing with unprecedented sensitivity. J Mater Sci. 2019;30(5):4967-76. http://doi.org/1007/s10854-019-00793-4
- Umar MF, Nasar A. Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl Water Sci. 2018;8(211). http://doi.org/1007/s13201-018-0860-1
- Kiew LV, Chang CY, Huang SY, Wang PW, Heh CH, Liu CT, et al. Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors. Biosens Bioelectron. 2021;183:113-213. https://doi.org/10.1016/j.bios.2021.113213
- Myndrul V, Tamashevski A, Lipinska W, Siuzdak K, Iatsunskyi I. Highly sensitive electrochemical multimodal immunosensor for cluster of differentiation 5 (CD5) detection in human blood serum for early stage cancer detection based on laser-processed Ti/Au electrodes. Talanta 2024;279: 126612. https://doi.org/10.1016/j.talanta.2024.126612
- Sanjayan CG, Gokavi L, Ravikumar CH, Balarkishna RG. Antibody-modified 2D MXene nanosheet probes for selective, picolevel detection of cancer biomarkers. Biosens Bioelectron. 2025;271:117028. https://doi.org/10.1016/j.bios.2024.117028