ساخت و مشخصه‌یابی حسگر الکتروشیمیایی سلول‌های CD8+Tمبتنی بر کامپوزیت پلی‌پیرول و اکسید گرافن کاهش‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مواد. دانشگاه صنعتی اصفهان. اصفهان. ایران

چکیده

مقدمه و اهداف: شناسایی نشانگر زیستی سلول‌های CD8+T، یک شاخص کلیدی بیماری‌های ایمونولوژی، با روش‌های فعلی زمان‌بر است. هدف از این پژوهش، توسعه یک حسگر زیستی الکتروشیمیایی حساس، برپایه نانوکامپوزیت پلی‌پیرول و اکسید گرافن کاهش‌یافته جهت تشخیص سلول‌های CD8+T با قابلیت مراقبت در محل، دقت، حساسیت بسیار مناسب و ساده می باشد.
مواد و روش‌ها: فرایند رسوب‌دهی کامپوزیت پلی‌پیرول و اکسید گرافن کاهش‌یافته با تکنیک ولتامتری چرخه‌ای، با تعداد سیکل‌های 15، 20 و 25 (کد نمونه‌های A15، A20 و A25) روی الکترود کار حسگر انجام شد. برای تهیه نمونه با کامپوزیت پلی‌پیرول و اکسید گرافن با تعداد سیکل بهینه تحت لامپ فرابنفش (کد نمونه B20)، تکرار و نمونه‌ها مشخصه‌یابی شدند. آنتی‌بادی روی الکترود توسعه یافته ایموبلایز گردید و عملکرد حسگر با آزمون ولتامتری پالسی تفاضلی انجام شد.
یافته‌ها: تصاویر میکروسکوپی الکترونی روبشی گسیل میدانی نشان داد که نمونه A20 در مقایسه با نمونه B20، دارای مورفولوژی سطحی یکنواخت‌تر و متخلخل‌تر است. براساس نتایج ولتامتری پالس تفاضلی، افزایش غلظت سلول‌های CD8+T، منجر به کاهش شدت جریان شد. با توجه به منحنی کالیبراسیون، حد تشخیص برابر با هفت سلول در میلی‌لیتر تعیین شد که نشان‌دهنده حساسیت بالای حسگر در شناسایی سلول‌های CD8+T است.
نتیجه‌گیری: نمونه A20، به عنوان ساختار بهینه برای کاربرد در حسگرهای زیستی الکتروشیمیایی شناسایی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication and Characterization of an Electrochemical CD8⁺ T Cells Sensor Based on Polypyrrole/Reduced Graphene Oxide Composite

نویسندگان [English]

  • maryam Amoo
  • hamidreza salimi jazi
  • Sheyda Labbaf
  • Fathallah Karimzadeh
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Introduction and Objectives: Detecting the CD8⁺ T cell biomarker—a key indicator of immunological diseases—is often slow with current methods. This research aims to develop a sensitive, accurate, and easy-to-use electrochemical biosensor, utilizing reduced graphene oxide and polypyrrole nanocomposite, for on-site, sensitive, accurate, and rapid detection of CD8⁺ T cells.
Materials and Methods: The polypyrrole/reduced graphene oxide composite was deposited onto the sensor's working electrode using cyclic voltammetry with 15, 20, and 25 cycles, corresponding to sample codes A15, A20, and A25. To prepare the sample containing the polypyrrole and graphene oxide composite with the selected number of cycles under a UV lamp (sample code B20), the same procedure was repeated, followed by characterization of the samples. Antibody immobilization was then performed on the developed electrode, and sensor performance was assessed using differential pulse voltammetry.
Results: FESEM imaging revealed that the sample A20 had a more uniform and porous surface morphology compared to the sample B20. According to the differential pulse voltammetry results, an increase in the concentration of CD8⁺ T cells led to a decrease in current intensity. Based on the calibration curve, the detection limit was determined to be seven cells.ml-1, indicating the high sensitivity of the sensor in identifying CD8⁺ T cells.
Conclusion: Sample A20 was identified as the optimal structure for application in electrochemical biosensors based on Ppy-rGo composite to detect CD8+T cells.

کلیدواژه‌ها [English]

  • Polypyrrole
  • Reduced graphene oxide
  • Electrochemical sensor
  • CD8⁺ T Cells
  • Cyclic voltammetry
  • Differential pulse voltammetry
  1. Lin Y, Ruze R, Zhang R, Tuergan T, Wang M, Tulahong A, et al. Immunometabolic targets in CD8+ T Cells within the tumor microenvironment of hepatocellular carcinoma. Liver Cancer 2024;14:474-496.http://doi.org/1159/000542578
  2. Jia J, Li H, Huang Z, Yu J, Zheng Y, Cao B. Comprehensive immune landscape of lung-resident memory CD8+ T cells after influenza infection and reinfection in a mouse model. Front Microbiol. 2023;14:1184884.http://doi.org/3389/fmicb.2023.1184884
  3. Martinez M, Moon EK. CAR T Cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10(128):1-21. http://doi.org/3389/fimmu.2019.00128
  4. Nasser Gholijani GD, Fatemeh Rezaei Kahmini. T cell-Intrinsic peripheral tolerance: A checkpoint target to treat autoimmunity. J Cell Immunol. 2024;6:87-97. https://doi.org/10.33696/immunology.6.194
  5. van de Sandt CE, McQuilten HA, Aban M, Nguyen THO, Valkenburg SA, Grant EJ, et al. Gradual changes within long-lived influenza virus-specific CD8+T cells are associated with the loss of public TCR clonotypes in older adults. EBioMedicine 2025;115:105697.http://doi.org/1016/j.ebiom.2025.105697
  6. van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 2020;20(4):218-32. http://doi.org/3389/fimmu.2022.894919
  7. Monsef R, Salavati-Niasari M. Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. Journal of Colloid and Interface Science. 2022;613:1-14.

https://doi.org/10.1016/j.jcis.2022.01.039

  1. Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8+T cells: Cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med. 2025;23(1):341. http://doi.org/1186/s12967-025-06291-y
  2. Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, et al. A highly sensitive flow cytometric approach to detect rare antigen-specific T Cells: development and comparison to standard monitoring tools. Cancers (Basel) 2023;15(3):574. http://doi.org/3390/cancers15030574
  3. Monsef R, Salavati-Niasari M. Hydrothermal architecture of Cu5V2O10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosens Bioelectron. 2021; 178:113017. https://doi.org/10.1016/j.bios.2021.113017
  4. Davtalab-Ghazimahalleh M, Hosseini-Golgoo SM, Zamani H. Manufacturing and characterization of a potentiometric sensor highly sensitive to NO2 gas, based on K2CO3/Al2O3 composite material. J Adv Mater Eng. 2024;43(4):69-84.

https://doi.org/10.47176/jame.43.4.1087

  1. Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev. 2023;52(16):535.2-72.

http://doi.org/10.1039/d2cs00928e

  1. Ravikiran YT, Chethan B, Prasad V, Raj Prakash HG, Prashantkumar M, Tiwari SK, et al. Polypyrrole/reduced graphene oxide composite as a low-cost novel sensing material for fast-response humidity sensor. Mater Chem Phys. 2023;303:127800. http://doi.org/1016/j.matchemphys.2023.127800
  2. Goudarzi M, Salavati-Niasari M, Motaghedifard M, Hosseinpour-Mashkani SM. Semiconductive Tl2O3 nanoparticles: Facile synthesis in liquid phase, characterization and its applications as photocatalytic substrate and electrochemical sensor. J Mol Liq. 2016;219:720-7. https://doi.org/10.1016/j.molliq.2016.04.007
  3. Carinelli S, Xufre Ballesteros C, Marti M, Alegret S, Pividori MI. Electrochemical magneto-actuated biosensor for CD4 count in AIDS diagnosis and monitoring. Biosens Bioelectron. 2015;74:974-80. https://doi.org/ 10.1016/j.bios.2015.07.053
  4. Baladi M, Teymourinia H, Dawi EA, Amiri M, Ramazani A, Salavati-Niasari M. Electrochemical determination of imatinib mesylate using TbFeO3/g-C3N4 nanocomposite modified glassy carbon electrode. Arab J Chem. 2023;16:104963. https://doi.org/1016/j.arabjc.2023.104963
  5. Bialas K, Tay HM, Petchakup C, Salimian R, Ward SG, Lindsay MA, et al. Electrochemical microfluidic biosensor for the detection of CD4(+) T cells. Microsyst Nanoeng. 2025;11(63):1-13.

https://doi.org/10.1038/s41378-025-00893-8

  1. Yadegari A, Omidi M, Yazdian F, Zali H, Tayebi L. An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene–gold nanostructures. RSC Adv. 2017;7(4):2365-72. http://doi.org/1039/c6ra25938c
  2. Ghasemi Z, Kharaziha M, Raeissi K, Karimzadeh F. Fabrication and characterization of a non-enzymatic electrochemical sensor based on molecularly imprinted polymer for glucose monitoring in medical J Adv Mater Eng. 2025;45(1):1-15. https://doi.org/10.47176/jame.45.1.1110
  3. Hasani A, Baniadam M, Maghrebi M. Novel approach for electrochemical functionalization of graphene with surfactant. J Adv Mater Eng. 2022;35(4):27-38. http://doi.org/18869/acadpub.jame.35.4.27
  4. Oleneva E, Khaydukova M, Ashina J, Yaroshenko I, Jahatspanian I, Legin A, et al. A Simple procedure to assess limit of detection for multisensor systems. Sensors 2019;19(6):1359.

http://doi.org/10.3390/s19061359

  1. Ganguly A, Ebrahimzadeh T, Zimmern PE, De Nisco NJ, Prasad S. Label free, lateral flow prostaglandin E2 electrochemical immunosensor for urinary tract infection diagnosis. Chemosensors 2021;9(9):271. http://doi.org/3390/chemosensors9090271
  2. Parayangattil Jyothibasu J, Chen MZ, Lee RH. Polypyrrole/Carbon nanotube freestanding electrode with excellent electrochemical properties for high-performance all-solid-state supercapacitors. ACS Omega 2020;5(12):6441-51.

http://doi.org/10.1021/acsomega.9b04029

  1. Seema S, Prasad MVNA. Dielectric Spectroscopy of Nanostructured Polypyrrole-NiO Composites. J Polym. 2014;2014:1-5.

http://doi.org/10.1155/2014/950304

  1. Wang X, Yang C, Li H, Liu P. Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochimica Acta 2013;111:729-37. https://doi.org/10.1016/j.electacta.2013.08.145
  2. Zine PC, Narwade VN, Patil SS, Qureshi MT, Tsai M-L, Hianik T, et al. Sensitive electrochemical sensor based on amino-functionalized graphene oxide/polypyrrole composite for detection of Pb2+ Chemosensors 2025;13(2):34.

http://doi.org/10.3390/chemosensors13020034

  1. Yang Y, Yang X, Yang W, Li S, Xu J, Jiang Y. Porous conducting polymer and reduced graphene oxide nanocomposites for room temperature gas detection. RSC Adv. 2014;4(80):42546-53.

http://doi.org/10.1039/c4ra06560c

  1. Hu J, Li Y, Gao G, Xia S. A Mediated BOD biosensor based on immobilized B. subtilis on three-dimensional porous Graphene-Polypyrrole composite. Sensors (Basel) 2017;17(11):2594.

http://doi.org/10.3390/s17112594

  1. Wang M, Zhang D, Yang A, Wang D, Zong X. Fabrication of polypyrrole/graphene oxide hybrid nanocomposite for ultrasensitive humidity sensing with unprecedented sensitivity. J Mater Sci. 2019;30(5):4967-76. http://doi.org/1007/s10854-019-00793-4
  2. Umar MF, Nasar A. Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl Water Sci. 2018;8(211). http://doi.org/1007/s13201-018-0860-1
  3. Kiew LV, Chang CY, Huang SY, Wang PW, Heh CH, Liu CT, et al. Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors. Biosens Bioelectron. 2021;183:113-213. https://doi.org/10.1016/j.bios.2021.113213
  4. Myndrul V, Tamashevski A, Lipinska W, Siuzdak K, Iatsunskyi I. Highly sensitive electrochemical multimodal immunosensor for cluster of differentiation 5 (CD5) detection in human blood serum for early stage cancer detection based on laser-processed Ti/Au electrodes. Talanta 2024;279: 126612. https://doi.org/10.1016/j.talanta.2024.126612
  5. Sanjayan CG, Gokavi L, Ravikumar CH, Balarkishna RG. Antibody-modified 2D MXene nanosheet probes for selective, picolevel detection of cancer biomarkers. Biosens Bioelectron. 2025;271:117028. https://doi.org/10.1016/j.bios.2024.117028

 

 

تحت نظارت وف ایرانی