بررسی مقاومت به سایش و خوردگی پوشش الکترولس Ni-P/Ni-B تقویت‌شده با محلول حاوی سریا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده علوم کاربردی، دانشگاه صنعتی مالک اشتر، شاهین شهر، اصفهان

2 دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، شاهین شهر، اصفهان

چکیده

مقدمه و اهداف: سایش و خوردگی، از جمله چالش‌های اصلی هستند که عمر مفید و عملکرد اجزای صنعتی را کاهش می‌دهند. در این مطالعه، یک فرایند بهبودیافته با محلول حاوی سریا در پوشش‌های الکترولس Ni-P/Ni-B به‌منظور بهبود خواص مکانیکی، تریبولوژیکی و خوردگی اعمال شده است.
مواد و روش‌ها: توزیع یکنواخت نانوذرات سریا با واردکردن محلول حاوی سریا مشتق‌شده از پیش‌ساز آلکوکسیدی بوتوکسید سریم به حمام الکترولس Ni-B، ایجاد شد. مشخصه‌یابی با استفاده از آزمون‌های XRD و FESEM و DLS، آزمایش‌ پلاریزاسیون پتانسیودینامیک و سایش پین روی دیسک انجام شد.
یافته‌ها: نتایج نشان داد که استفاده از محلول حاوی سریا موجب بهبود یکنواختی توزیع ذرات تقویت‌کننده و تشکیل پوشش Ni-B با کیفیت سطحی مناسب شد، به‌طوری ‌که ترک سطحی واقعی مشاهده نشده و ویژگی‌های سطحی عمدتاً به مرز ندول‌های گل‌کلمی مربوط است. منحنی پلاریزاسیون نشان‌دهنده رفتار خوردگی پایدار و کندتر پوشش لایه‌نشانی‌شده با محلول حاوی نسبت‌به زیرلایه است که ناشی از تشکیل لایه محافظ و افزایش پایداری شیمیایی سطحی است. استفاده از پوشش Ni-P/Ni-B-CeO2 روی زیرلایه آلومینیومی موجب کاهش 21% ضریب اصطکاک و همچنین کاهش 70% نرخ سایش ویژه نسبت به زیرلایه شده است. 
نتیجه‌گیری: استفاده از محلول حاوی سریا در پوشش‌های Ni-B، به‌دلیل جلوگیری از تجمع ذرات در پوشش منجر به افزایش قابل‌توجه مقاومت دربرابر خوردگی و بهبود خواص مکانیکی مانند کاهش ضریب اصطکاک و بهبود مقاومت به سایش پوشش شد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Wear and Corrosion Resistance of Electroless Ni-P/Ni-B Coating Reinforced with Ceria Sol

نویسندگان [English]

  • Faezeh Badiee 1
  • Daryush Arabian 1
  • Hossein Jamali 2
  • Shahab Torkian 2
1 Faculty of Applied Sciences, Malek Ashtar University of Technology, Shahin Shahr, Isfahan
2 Department of Materials Engineering, Malek Ashtar University of Technology, Shahin Shahr, Isfahan
چکیده [English]

Introduction and Objectives: Wear and corrosion are among the primary challenges that reduce the service life and performance of industrial components. In this study, a sol-enhanced method is employed to incorporate ceria into electroless Ni-P/Ni-B coatings to improve mechanical, tribological, and corrosion properties.
Materials and Methods: A uniform distribution of ceria nanoparticles was achieved by introducing ceria sol derived from an alkoxide precursor into the Ni-B electroless bath. Characterization was performed by XRD and FE-SEM, DLS, potentiodynamic polarization test, and pin-on-disk wear tests.
Results: The results showed that the use of ceria sol improved the uniformity of the distribution of reinforcing particles and formed a relatively dense Ni-B coating with good surface quality and no real surface cracks. The surface features were mainly related to the boundaries of cauliflower nodules. The polarization curve indicates a more stable with slower rate of corrosion for the CeO2-containing coating compared to the substrate, due to the formation of a protective layer and increased surface chemical stability. Using the Ni-P/Ni-B-CeO2 coating on the aluminum substrate resulted in a 21% reduction in the friction coefficient and a 70% reduction in the specific wear rate compared to the substrate.
Conclusion: Using sol of ceria in Ni-B coatings, due to the prevention of particle accumulation in the coating, led to a significant increase in corrosion resistance, reduced friction coefficient, and improved wear resistance of the coating.

کلیدواژه‌ها [English]

  • Electroless
  • Coating
  • Wear
  • Ceria
  • Sol
  1. Sharifalhoseini Z, Davoodi A. Uniform nucleation of zincate layer through the optimized etching process to prevent failure in electroless plating on 2024 aluminum alloy. Eng Fail Anal. 2021;124:105326. https://doi.org/10.1016/j.engfailanal.2021.105326
  2. Waware US, Nazir R, Prasad A, Hamouda AMS, Pradhan AK, Alshehri M, et al. Preparation and properties of electrodeposited Ni-B-V2O5 composite coatings. Surf Coatings Technol. 2021;409:126888. https://doi.org/10.1016/j.surfcoat.2021.126888
  3. Madah F, Dehghanian C, Amadeh A. Investigations on the wear mechanisms of electroless Ni–B coating during dry sliding and endurance life of the worn surfaces. Surf Coatings Technol. 2015;282:6–15. https://doi.org/10.1016/j.surfcoat.2015.09.003
  4. Verdi P, Monirvaghefi SM, Ashrafizadeh F. Electroless nickel–phosphorus coating via the novel substrate local heating (hot substrate) technique. J Adv Mater Eng. 2021;40(3):1–16. https://doi.org/10.47176/JAME.40.3.23011 (In Persian)
  5. Narayanan TSNS, Krishnaveni K, Seshadri SK. Electroless Ni–P/Ni–B duplex coatings: preparation and evaluation of microhardness, wear, and corrosion resistance. Mater Chem Phys. 2003;82(3):771–9. https://doi.org/10.1016/S0254-0584(03)00390-0
  6. Sudagar J, Lian J, Sha W. Electroless nickel, alloy, composite and nano coatings–A critical review. J Alloys Compd. 2013;571:183–204. https://doi.org/10.1016/j.jallcom.2013.03.107
  7. Mindivan F, Mindivan H, Bayram A. The Electroless monolayer and duplex Ni–B and Ni–P coatings for 316L stainless steel in synergistic combination of mechanical (wear) and chemical (corrosion) processes. Adv Eng Mater. 2023;25(10):220. https://doi.org/10.1002/adem.202201501
  8. Krishnaveni K, Sankara Narayanan TSNN, Seshadri SK. Electroless Ni-B-Si3N4 composite coating: deposition and evaluation of its characteristic properties. Synth React Inorganic, Met Nano-Metal Chem. 2012;42(7):920–7. https://doi.org/10.1080/15533174.2011.618475
  9. Sayyad F, Senanayake R. Improving the deposit efficiency of nano composite deposits on AZ91 magnesium alloy by using a suitable bath composition and operating conditions. Mater Today Proc. 2021; 47:2990–2993. https://doi.org/10.1016/j.matpr.2021.05.311
  10. Ghaderi M, Rezagholizadeh M, Heidary A, Monirvaghefi SM. The effect of Al2O3 nanoparticles on tribological and corrosion behavior of electroless Ni–B–Al2O3 composite coating. Prot Met Phys Chem Surfaces. 2016;52(5):854–8. https://doi.org/10.1134/S2070205116050087
  11. Ürdem Ş, Duru E, Algül H, Uysal M, Akbulut H. Evaluation of high temperature tribological behavior of electroless deposited Ni-B–Al2O3 Wear 2021;482–483:203928. https://doi.org/10.1016/j.wear.2021.203960
  12. Georgiza E, Gouda V, Vassiliou P. Production and properties of composite electroless Ni-B-SiC coatings. Surf Coatings Technol. 2017;325:46–51. http://dx.doi.org/10.1016/j.surfcoat.2017.06.019
  13. Baibordi A, Amini K, Bina MH, Dehghan A. The effect of heat treatment temperature on the properties of the composite duplex electroless coating of Ni-P/Ni-B-BN containing boron nitride nanoparticles. Kov Mater. 2014;52(5):263–8. https://doi.org/10.4149/km 2014 5 263.
  14. Gültekin D, Duru E, Akbulut H. Improved wear behaviors of lead-free electroless Ni-B and Ni-B/CeO2 composite coatings. Surf Coatings Technol. 2021;422: 127525. https://doi.org/10.1016/j.surfcoat.2021.127525
  15. Xiao N, Zhang C, Yin X, Yang K, Zhang F, Xiong B. Soft metal micro/nanolubricant in tribology. Mater Sci Eng B 2023;295:116600. https://doi.org/10.1016/j.mseb.2023.116600
  16. Badiee F, Arabian D, Jamali H, Torkian S. Investigation of wear behavior of Ni-P/Ni-B-CeO2 composite coating. Results Surf Interfaces 2025; 100482. https://doi.org/10.1016/j.rsurfi.2025.100482
  17. Soleimani Roodi K, Ebrahimifar H, Mohsenifar F. Effect of pH of the electroless bath on microstructure and corrosion behavior of Ni-Co-La2O3-CeO2 Adv Ceram Prog. 2024;10(2):9–16. https://doi.org/10.30501/acp.2024.478445.1163
  18. Nosrati H, Heydari M, Khodaei M. Cerium oxide nanoparticles: synthesis methods and applications in wound healing. Mater Today Bio. 2023;23:100823. https://doi.org/10.1016/j.mtbio.2023.100823
  19. Yang J, Lukashuk L, Li H, Föttinger K, Rupprechter G, Schubert U. High surface area ceria for CO oxidation prepared from cerium t-butoxide by combined sol–gel and solvothermal processing. Catal Letters 2014;144:403–12. https://doi.org/10.1007/s10562-013-1162-8
  20. Chen W, Gao W, He Y. A novel electroless plating of Ni–P–TiO2 nano-composite coatings. Surf Coatings Technol. 2010;204(15):2493–8. https://doi.org/10.1016/j.surfcoat.2010.01.032
  21. Chakrabarti R, Hota SB, Mandal PB. Synthesis and comparative characterization of electroless Ni–P, Ni–P-nanoAl2O3, and duplex Ni–P/Ni–P-nano-Al2O3 coatings on aerospace-graded AA2024 alloy. In: Advances in Structural Integrity: Structural Integrity Over Multiple Length Scales. Springer; 2022. p. 73–81. https://doi.org/10.1007/978-981-16-8724-2_7
  22. Kallel M, Masseoud M, Vesco S, Barletta M, Elleuch K. The effects of TiO2 sol concentration on single-and multiple-scratch damage in electroplated Ni–B-TiO2 sol composite coating. Ceram Int. 2020;46(3):3767–76. https://doi.org/10.1016/j.ceramint.2019.10.099
  23. Wang Y, Tay SL, Wei S, Xiong C, Gao W, Shakoor RA, et al. Microstructure and properties of sol-enhanced Ni-Co-TiO2 nano-composite coatings on mild steel. J Alloys Compd. 2015;649:222–8. https://doi.org/10.1016/j.jallcom.2015.07.147
  24. Sadeghzadeh-Attar A, AyubiKia G, Ehteshamzadeh M. Improvement in tribological behavior of novel sol-enhanced electroless Ni-P-SiO2 nanocomposite coatings. Surf Coatings Technol. 2016;307:837–48. https://doi.org/10.1016/j.surfcoat.2016.10.026
  25. Wang Y, Shu X, Wei S, Liu C, Gao W, Shakoor RA, et al. Duplex Ni–P–ZrO2/Ni–P electroless coating on stainless steel. J Alloys Compd. 2015;630:189–94. https://doi.org/10.1016/j.jallcom.2015.01.064
  26. Ghaziof S, Gao W. Zn–Ni–Al2O3 nano-composite coatings prepared by sol-enhanced electroplating. Appl Surf Sci. 2015;351:869–79. https://doi.org/10.1016/j.apsusc.2015.06.010
  27. Ferrara MC, Piscopiello E, Laera AM, Pilloni L, Mazzarelli S, Tapfer L. Preparation and characterization of close-packed nanostructured sol–gel ceria thin films prepared using cerium-sec-butoxide as precursor. Sol-Gel Sci Technol. 2011; 60(3):333–339. https://doi.org/10.1007/s10971-011-2529-1
  28. Chen W, He Y, Gao W. Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings. Surf Coatings Technol. 2010;204(15):2487–92. https://doi.org/10.1016/j.surfcoat.2010.01.036
  29. Niksefat V, Mahboubi F. Tribological performance of plasma-nitrided self-lubricant electroless Ni-B-graphite composite coatings. Tribol Int. 2024;109905. https://doi.org/10.1016/j.triboint.2024.109905
  30. Hamid ZA, Hassan HB, Attyia AM. Influence of deposition temperature and heat treatment on the performance of electroless Ni-B films. Surf Coatings Technol. 2010;205(7):2348–54. https://doi.org/10.1016/j.surfcoat.2010.09.025
  31. Nemane V, Chatterjee S. Effect of silicon carbide incorporation and heat treatment on tribological properties of electroless Ni–B–W alloy coating. Mater Chem Phys. 2024;311:128500. https://doi.org/10.1016/j.matchemphys.2023.128500
  32. Eraslan S, Ürgen M. Oxidation behavior of electroless Ni–P, Ni–B, and Ni–W–B coatings deposited on steel substrates. Surf Coatings Technol. 2015;265:46–52. https://doi.org/10.1016/j.surfcoat.2015.01.064
  33. Zhu Y, Wang J, Liu H, Ren P, Yan F. Improvement in the corrosion and wear properties of Monel 400 alloy by electroless Ni-P deposition in seawater. Mater Chem Phys. 2024;324:129684. https://doi.org/10.1016/j.matchemphys.2024.129684
  34. Li W, Liu B, Guo Q, Guo W, Zhang S, Qu Y. Reaction-induced regioselective reconstruction of Ni-doped Ce (OH)3/CeO2 enables exceptional activity and selectivity for reverse water-shift reaction. Nat Commun. 2025;16(1):7335. https://doi.org/10.1038/s41467-025-62771-1
  35. Vitry V, Delaunois F, Dumortier C. Mechanical properties and scratch test resistance of nickel–boron coated aluminium alloy after heat treatments. Surf Coatings Technol. 2008;202(14):3316–24. https://doi.org/10.1016/j.surfcoat.2007.12.001
  36. Saeidpour F, Ebrahimi T. Evaluation of Ni-Co/TiO2–CeO2 nanocomposite coatings fabricated by electro-co-deposition. Surf Eng. 2025;41(1). https://doi.org/10.1177/02670844241301418
  37. Mandal BB, Kumar V, Sahoo S, Oraon B, Mukherjee S. Nanoparticle-reinforced electroless composite coatings for pipeline steel: Synthesis and characterization. Materials (Basel) 2025;18(17):3949. https://doi.org/10.3390/ma18173949
  38. Sadreddini S, Afshar A. Corrosion resistance enhancement of Ni-P-nano SiO2 composite coatings on aluminum. Appl Surf Sci. 2014;303:125–30. https://doi.org/10.1016/j.apsusc.2014.02.109
  39. Zielińska K, Stankiewicz A, Szczygieł I. Electroless deposition of Ni–P–nano-ZrO2 composite coatings in the presence of various types of surfactants. J Colloid Interface Sci. 2012;377(1):362–7. https://doi.org/10.1016/j.jcis.2012.03.049
  40. Promphet N, Rattanawaleedirojn P, Rodthongkum N. Electroless Ni-P-TiO2 sol-RGO: A smart coating for enhanced corrosion resistance and conductivity of steel. Surf Coatings Technol. 2017;325:604–10. https://doi.org/10.1016/j.surfcoat.2017.07.018
  41. Li D, Cui X, Wen X, Feng L, Hu Y, Jin G, et al. Effect of CeO2 nanoparticles modified graphene oxide on electroless Ni-P coating for Mg-Li alloys. Appl Surf Sci. 2022;593:153381. https://doi.org/10.1016/j.apsusc.2022.153381
  42. Wu X, Mao J, Zhang Z, Che Y. Improving the properties of 211Z Al alloy by enhanced electroless Ni–P–TiO2 nanocomposite coatings with TiO2 Surf Coatings Technol. 2015;270:170–4. https://doi.org/10.1016/j.surfcoat.2015.03.006
  43. Rajendran P, Muthuraj A, Rajagounder NE. Review on CeO2-based corrosion coatings. Trans Indian Ceram Soc. 2022;81(4):158–74. https://doi.org/10.1080/0371750X.2022.2149623
  44. Yan Y, Wu Y, Wu Y, Weng Z, Liu S, Liu Z, et al. Recent advances of CeO2‐based composite materials for photocatalytic applications. ChemSusChem. 2024;17(14). https://doi.org/10.1002/cssc.202301778
  45. Wang L, Chen M, Liu H, Jiang C, Ji V, Moreira F. Optimisation of microstructure and corrosion resistance of Ni-Ti composite coatings by the addition of CeO2 Surf Coatings Technol. 2017; 331:196–205. https://doi.org/10.1016/j.surfcoat.2017.10.049
  46. Narayanan TSNS, Krishnaveni K, Seshadri SK. Electroless Ni-P/Ni-B duplex coatings: Preparation and evaluation of microhardness, wear, and corrosion resistance. Mater Chem Phys. 2003;82(3):771–9. https://doi.org/10.1016/S0254-0584(03)00390-0
  47. Mohanty D, Barman TK, Sahoo P. Tribological behavior, mechanical properties and electrochemical corrosion response of ultrasonically assisted TiO2 reinforced electroless Ni–B coatings. J Inst Eng Ser D 2024;105(2):1231–42. https://doi.org/10.1016/S0254-0584(03)00390-0
  48. Tafreshi M, Allahkaram S, Mahdavi S. Investigation of properties and comparison of corrosion and wear of Zn–Ni and Zn–Ni/PTFE coatings. J Adv Mater Eng. 2018;37(3):49–62. https://doi.org/10.29252/JAME.37.3.49 (In Persian)

 

 

تحت نظارت وف بومی