بررسی سینتیک تبلور فازهای نانومتری Fe36Cr12Mo10 و α-Fe در استحاله غیر شیشه‌ای شدن آلیاژ غیربلورین Fe51Cr18Mo7B16C4Nb4

نویسندگان

دانشکده فنی و مهندسی، بخش مهندسی مواد، دانشگاه تربیت مدرس

چکیده

در این پژوهش تبلور فازهای Fe36Cr12Mo10 و α-Fe در استحاله غیر شیشه‌ای شدن آلیاژ غیربلورین Fe51Cr18Mo7B16C4Nb4 با استفاده از آزمون پراش اشعه ایکس و میکروسکوپ الکترونی عبوری مورد مطالعه قرار گرفت. به‌منظور ارزیابی سینتیک تبلور، آزمون گرماسنجی افتراقی در نرخ-های گرمایش مختلف انجام شد. نتایج نشان داد که تبلور دو مرحله‌ای منجر به تشکیل فازهای Fe36Cr12Mo10 و α-Fe در ساختار آلیاژ می‌شود. انرژی فعال‌سازی تبلور فازهای Fe36Cr12Mo10 و α-Fe با استفاده از مدل Kissinger-Starink، به‌ترتیب kJ/mol 747 و 880 اندازه‌گیری شد. نتایج بررسی سینتیکی، مکانیزم رشد کنترل-نفوذی یک بعدی همراه با کاهش نرخ جوانه‌زنی در تشکیل فازهای Fe36Cr12Mo10 و α-Fe را نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Crystallization Kinetics of Fe36Cr12Mo10 and α-Fe Phases in Devitrification of Fe51Cr18Mo7B16C4Nb4 Amorphous Alloy

نویسندگان [English]

  • S. Ahmadi
  • R. Arabi Jeshvaghani
  • H.R. Shahverdi
چکیده [English]

In this research, crystallization of Fe36Cr12Mo10 and α-Fe phases in devitrification of Fe51Cr18Mo7B16C4Nb4 amorphous alloy was studied using X-ray diffraction and transmission electron microscopy. For evaluation of crystallization kinetics, differential scanning calorimetric tests were carried out at different heating rates. Results showed that two-step crystallization led to the formation of Fe36Cr12Mo10 and α-Fe phases in the structure of alloy. Activation energy of crystallization of Fe36Cr12Mo10 and α-Fe phases measured according to Kissinger-Starink model were 747 and 880 kJ/mol, respectively. Results growth mechanism along with the decreasing nucleation rate in crystallization of Fe36Cr12Mo10 and α-Fe phases.

کلیدواژه‌ها [English]

  • Crystallization
  • Devitrification
  • activation energy
  • Growth mechanism
1. Wang, W.H., Dong, C.and Shek, C.H., “Bulk
Metallic Glasses”, Materials Science & Engineering
R, Vol. 44, pp. 45-89, 2005.
2. Schroers, J., “The Superplastic Forming of Bulk
Metallic Glasses”, JOM, Vol. 57, pp. 35-39, 2005.
3. Huang, X.M., Chang, C.T., Chang, Z.Y., Wang,
X.D., Cao, Q.P., Shen, B.L., Inoue, A. and Jiang,
J.Z., “Formation of Bulk Metallic Glasses in the
Fe–M–Y–B (M= Transition Metal) System”, Journal
of Alloys and Compounds, Vol. 460, pp. 708-713,
2008.
4. Wang, S.L. and Yi, S., “The Corrosion Behaviors of
Fe-Based Bulk Metallic Glasses in a Sulfuric
Solution at 70 °C”, Intermetallics, Vol. 18,
pp. 1950-1953, 2010.
5. Tan, M.W, Akiyama, E., Kawashima, A., Asani, K.
and Hashimoto, K., “The Influences of Mo Addition
and Air Exposure on the Corrosion Behavior of
Amorphous Fe-Cr-P-C Alloy in De-aerated 1 M
HCl”, Corrosion Science, Vol. 38, pp. 349-65, 1996.
6. Greer, A.L., “Metallic Glass”, Materials Today,
Vol.12, pp. 14-22, 2009.
7. Solima, A.A., Al-Heniti, S., Al-Hajry A. and
Al-Assiri, M., “Crystallization Kinetics of Melt-Spun
Fe83B17 Metallic Glass”, Thermochimica Acta,
Vol. 413, pp. 57-62, 2004.
8. Chrissafi, K., Maragakis, M.I., Efthimiadis, K.G. and
Polychroniadis, E.K., “Detailed Study of the
Crystallization Behaviour of the Metallic Glass
Fe75Si9B16”, Journal of Alloys and Compounds,
Vol. 386, pp. 165-173, 2005.
9. Minic, D.M., Maricic, A. and Adnadevic, B.,
“Crystallization of α-Fe Phase in Amorphous
Fe81B13Si4C2 Alloy”, Journal of Alloys and
Compounds , Vol. 473, pp. 363-367, 2009.
10. Jain, R., Saxena, N.S., Bhandari, D. and Sharma,
S.K., “Crystallization Kinetics of CuxTi100−x(x=43, 50
and 53) Glasses”, Physica B, 301, 341 -348, 2001.
11. Redjaimia, A., Proult, A., Donnadieu P. and
Morniroli, J.P., “Morphology, Crystallography and
Defects of the Intermetallic χ-Phase Precipitated in a
Duplex (δ + γ) Stainless Steel”, Journal of Materials
Science, Vol. 39, pp. 2371-2386, 2004.
12. Ahmadi, S., Shahverdi H.R. and Saremi, S.S.,
“Nanocrystallization of α-Fe Crystals in
Fe52Cr18Mo7B16C4Nb3 Bulk Amorphous Alloy”,
Journal of Materials Science & Technology,
Vol. 27(6), pp. 497-502, 2011.
13. Branagan, D.J., Marshall, M.C. and Meacham, B.E.,
“High Toughness High Hardness Iron Based PTAW
Weld Materials”, Materials Science & Engineering
A, Vol. 428, pp. 116-123, 2006.
14. Starink, M.J., “Analysis of Aluminum Based Alloys
by Calorimetry: Quantitative Analysis of Reactions
and Reaction Kinetics”, Journal of International
Materials Review, Vol. 49, pp. 191-226, 2004.
15. Rho, I.C., Yoon, C.S., Kim, C.K., Byun, T.Y. and
Hong, K.S., “Crystallization of Amorphous Alloy
Co68Fe4Cr4Si13B11”, Materials Science &
Engineering B, Vol. 96, pp. 48-52, 2002.
16. Ahmadi, S., Shahverdi H.R. and Saremi, S.S.,
“Effects of Nb Alloying on Nano-Crystallization
Kinetics of Fe55-xCr18Mo7B16C4Nbx Bulk Amorphous
Alloy”, Journal of Materials Science & Technology,
Vol. 27(8), pp. 735-740, 2011.
17. Ahmadi, S., Shahverdi H.R., Afsari, M. and
Abdollah-zadeh, A., “Nano-Crystallization of
Fe36Cr12Mo10 Phase in Fe55-xCr18Mo7B16C4Nbx (X=0,
3, 4) Amorphous Alloys”, Journal of Non-Crystalline
Solids, Vol. 365, pp. 47-52, 2013.

ارتقاء امنیت وب با وف ایرانی