اثر افزودنی پلی‌وینیل پیرولیدن (PVP) بر خواص فازی و مغناطیسی نانو ذرات فریت کبالت تهیه شده به‌روش هیدروترمال

نویسندگان

دانشکده مواد و متالورژی، دانشگاه علم و صنعت ایران

چکیده

در این پژوهش اثر مقدار افزودنی پلی وینیل پیرولیدن (PVP) بر ساختار، ریخت شناسی1 و ویژگی‌های مغناطیسی فریت کبالت تهیه شده به‌روش هیدروترمال بررسی شد. بررسی فازی نمونه‌ها با پراش سنجی پرتو ایکس (XRD) در شرایط گوناگون فرایند تولید، نشان‌دهنده‌ی تشکیل فریت کبالت است. در دمای °C ۱۹۰ با کاهش مقدار PVP به ۱/0 درصد حجمی افزون بر فریت کبالت، قله‌های اکسید کبالت نیز دیده شد. تهیه‌ی طیف-های فروسرخ افزودنی PVP، نمونه‌ی آماده سازی شده پیش از فرایند هیدروترمال و C-0.1PVP3, 190 با طیف سنجی FTIR و مقایسه‌ی آن‌ها بیانگر تشکیل پیوند بین زنجیره‌های افزودنی PVP و سطح ذرات هیدروکسید فلزی و فریت کبالت بود که این کار مانع از رشد و درشت شدن آن-ها به‌هنگام فرایند تولید می‌شود. برای دیدن ریخت شناسی نمونه‌ها از میکروسکوپ الکترونی روبشی (SEM) استفاده شد. بر پایه‌ی یافته‌های به‌دست آمده از اندازه‌گیری ویژگی‌های مغناطیسی نانو ذرات با مغناطومتر نمونه‌ی ارتعاشی (VSM)، با افزایش مقدار افزودنی PVP از 1 /0 به 3/0 درصد حجمی، میدان پسماندزدای مغناطیسی از 298 به 684 اورستد افزایش و مغناطش اشباع از emu/g 58 به emu/g 51 کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of PVP Additive on Properties of Cobalt Ferrite Nanoparticles Prepared by Hydrothermal Method

نویسندگان [English]

  • P. Razmjouee
  • S. M. Mirkazemi
چکیده [English]

In this investigation, the effect of Polyvinylpyrrolidone (PVP) additive on microstructure, morphology and magnetic properties of cobalt ferrite nanoparticles prepared by hydrothermal method was studied. X-ray diffraction (XRD) studies in different synthesis conditions showed the formation of cobalt ferrite and cobalt oxide. Comparing IR spectrum of PVP additive, sol prepared before hydrothermal process and C-0.1PVP3, 190 obtained by FTIR spectroscopy indicated the formation of bond between PVP and surface of metallic hydroxide and cobalt ferrite particles, which prevented them from growing and coarsening. Scanning electron microscope (SEM) was used to study the morphology of samples. According to vibration sample magnetometer (VSM) results, as PVP amount increases from 0.1 to 0.3 volume percent, coercive field increases from 298 to 684 Oe and saturation magnetization decreases from 58 to 51 emu/g.

کلیدواژه‌ها [English]

  • Cobalt Ferrite
  • nano particles
  • magnetic properties
  • hydrothermal
  • PVP additive
1. Young-Wook, J., Jung-Wook, S. and Jinwoo, C., "Nanoscaling Laws of Magnetic Nanoparticles and
Their Applicabilities in Biomedical Sciences", Accounts of Chemical Research, Vol. 41, pp. 179- 189, 2008. 2. Chinnasamy, C.N., Senoue, M., Jeyadevan, B.,
Perales-Perez, O., Shinoda, K. and Tohji, K.,
"Synthesis of Size-Controlled Cobalt Ferrite Particles
with High Coercivity and Squareness Ratio", Colloid
and Interface Science, Vol. 263, pp. 80–83, 2003. 3. Sajjiaa, M., Oubahab, M., Prescotta, T. and Olabi, A.
G., "Development of Cobalt Ferrite Powder
Preparation Employing the Sol–Gel Technique and
its Structural Characterization", Alloys and
Compounds, Vol. 506, pp. 400–406, 2010. 4. Zhang, H., Hou, R., Lu, Z.L. and Du, X., "A Novel
Magnetic Nanocomposite Involving Anatase Titania
Coating Onsilica-Modified Cobalt Ferrite via Lower
Temperature Hydrolysis of a Water-Soluble Titania
Precursor", Materials Research Bulletin, Vol. 44, pp. 2000–2008, 2009. 5. Fu, W., Yang, H., Li, M., Yang, N. and Zou, G.,
"Anatase TiO2 Nanolayer Coating on Cobalt Ferrite
Nanoparticles for Magnetic Photocatalyst", Materials Letters, Vol. 59, pp. 3530–3534, 2005. 6. Mourãoa, H.A J.L., Malagutti, A.R. and Ribeiro, C.,
"Synthesis of TiO2-Coated CoFe2O4 Photocatalysts
Applied to the Photodegradation of Atrazine and
Rhodamine B in Water", Applied Catalysis A:
General, Vol. 382, pp. 284–292, 2010. 7. Li, C.J., Wang, J.N., Wang, B., Gong, J.R. and Lin,
Z., "A Novel Magnetically Separable TiO2/CoFe2O4 Nanofiber with High Photocatalytic Activity Under
UV–Vis Light", Materials Research Bulletin, Vol. 47, pp. 333–337, 2011. 8. Tian, X., Qu S.B., Pei Z.B. and Wang B.K., "Preparation and Characterization of CoFe2O4/TiO2 Magnetic Composite Films", Science in China Series
B: Chemistry , Vol. 51, pp. 842-847, 2007. 9. Kim, Y., Kim, D. and Lee, C.S. "Synthesis and
Characterization of CoFe2O4 Magnetic Nanoparticles
Prepared by Temperature-Controlled Coprecipitation
Method", Physica B, Vol. 337, pp. 42–51, 2003. 10.Cabuil, V., Dupuis, V., Talbot, D. and Neveu, S.,
"Ionic Magnetic Fluid Based on Cobalt Ferrite
Nanoparticles: Influence of Hydrothermal Treatment
on the Nanoparticle Size", Magnetism and Magnetic
Materials, Vol. 323, pp. 1238–1241, 2010. 11. Zhaoa, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi,
W., Guo, X., Yang, J., Lei, Y. and Cao, F., "Studies
on the Magnetism of Cobalt Ferrite Nanocrystals
Synthesized by Hydrothermal Method", Journal of
Solid State Chemistry, Vol. 181, pp. 245–252, 2007. 12. Tian, X., Qu S.B., Pei Z.B. and Wang B.K.,
"Synthesis and Magnetic Properties of Nearly
Monodisperse CoFe2O4 Nanoparticles through a
Simple Hydrothermal Condition", Nanoscale
Research Letters, Vol. 5, pp. 1039–1044, 2010. 13. Goha, S.C., Chiaa, C.H., Zakariaa, S., Yusoff, M.,
Hawa, C.Y., Ahmadi, S., Huangb, N.M. and Lim,
H.N., "Hydrothermal Preparation of High Saturation
Magnetization and Coercivity Cobalt Ferrite
Nanocrystals without Subsequent Calcination,"
Materials Chemistry and Physics, Vol. 120, pp. 31–
35, 2009. 14. Goodarz Naseri, M., Abbastabar Ahangar, H., Saion,
E.B., Shaari, A.H. and Hashim, M., "Simple
Synthesis and Characterization of Cobalt Ferrite
Nanoparticles by a Thermal Treatment Method,"
Nanomaterials, Vol. 2010, pp. 1-8, 2010.
15 .صلواتی نیاسری، م.، فرشته، ز. و زمانی، ر.، نانو شیمی: روشهای
ساخت، بررسی خواص و کاربردها، سخنوران، تهران، 1390.
16.Byrappa, K. and Yoshimura, M., Handbook of
Hydrothermal Technology: A Technology for Crystal
Growth and Materials Processing, New Jersey, Noyes, 2001. 17. Zhao, D., Wu, X., Guan, H. and Han, E., "Study on
Supercritical Hydrothermal Synthesis of CoFe2O4 Nanoparticles", Supercritical Fluids, Vol. 42, pp. 226–233, 2007. 18.Cote, L.J., Teja, A.S., Wilkinson, A.P. and Zhang,
Z.J., "Continuous Hydrothermal Synthesis of
CoFe2O4 Nanoparticles", Fluid Phase Equilibria, Vol. 210, pp. 307–317, 2003. 19.Covaliu, C.I., Jitaru, I., Paraschiv, G., Vasile, E.,
Biriş, S.S., Diamandescu, L., Ionita, V. and Iovu, H.,
"Core-Shell Hybrid Nanomaterials Based on
CoFe2O4 Particles Coated with PVP or PEG
Biopolymers for Applications in Biomedicine", Powder Technology, Vol. 237, pp. 415–426, 2012. 20. Sangmanee, M. and Maensiri, S., "Nanostructures
and Magnetic Properties of Cobalt Ferrite (CoFe2O4)
Fabricated by Electrospinning", Applied Physics A, Vol. 97, pp. 167-177, 2009. 21. Soltani, N., Saion, E., Husse, M.Z., Erfani, M.,
Rezaee, K. and Bahmanrokh, G., "Phase Controlled
Monodispersed CdS Nanocrystals Synthesized in
Polymer Solution Using Microwave Irradiation", Journal of Inorganic and Organometallic Polymers
and Materials, Vol. 22, pp. 830–836, 2012. 22. Graf, C., Vossen, D.L.J., Imhof, A. and Blaaderen,
A.V., "A General Method to Coat Colloidal Particles
with Silica", Langmuir, Vol. 19, pp. 6693-6700, 2003. 23.Bai, F., He, P., Jia, Z., Huang, X. and He, Y., "Size- Controlled Preparation of Monodispersed ZnO
Nanorods", Materials Letters, Vol. 59, pp. 1687–1690, 2005.
24. Wang, H., Qiao, X., Chen, J., Wang, X. and Ding, S.,
"Mechanisms of PVP in the Preparation of Silver
Nanoparticles", Materials Chemistry and Physics, Vol. 94, pp. 449–453, 2005. 25. Dai, Q., Lam, M., Swanson, S., Yu, R.H.R., Milliron,
D.J., Topuria, T., Jubert, P.O. and Nelson, A.,
"Monodisperse Cobalt Ferrite Nanomagnets with
Uniform Silica Coatings", Langmuir, Vol. 26, pp. 17546-17551, 2010. 26. Mathew, D.S. and Juang, R.S., "An Overview of the
Structure and Magnetism of Spinel Ferrite
Nanoparticles and their Synthesis in
Microemulsions", Chemical Engineering Journal, Vol. 129, pp. 51–65, 2007.

ارتقاء امنیت وب با وف ایرانی