بررسی تاثیر ذرات گرافیت و MoS‌2 بر خواص تریبولوژیکی پوشش کامپوزیتی Ni-SiC در دماهای بالا

نویسندگان

1 1 .دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان

2 2 .دانشکده مهندسی مواد، دانشگاه تهران، تهران

3 3 .دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، شاهینشهر

چکیده

پوشش کامپوزیتی Ni-SiC، یکی از پوشش‌هایی است که برای فراهم نمودن مقاومت سایشی مناسب، در بسیاری از کاربردها نظیر سیلندرها، موتورهای احتراق و قالب‌های ریخته‌گری مورد استفاده قرار می‌گیرد. در این پژوهش، سه پوشش Ni-SiC، Ni-SiC-MoS2 و Ni-SiC-Gr با استفاده هم‌زمان از دو هم‌زن مکانیکی و فراصوت در حمام سولفامات نیکل ایجاد شد. با توجه به دمای کاری موتور، آزمون سایش در محدوده دمایی 300-25 درجه سانتی‌گراد انجام و رفتار تریبولوژیکی پوشش‌ها در دماهای گوناگون ارزیابی شد. بر اساس یافته‌های آزمون‌های سایش، هر سه پوشش در دماهای سایش 25 و 100 درجه سانتی‌گراد، ضریب اصطکاک‌های مناسب و نزدیک به‌هم نشان می‌دهند. با افزایش دمای سایش به 200 و 300 درجه سانتی‌گراد، ضریب اصطکاک پوشش Ni-SiC به‌شدت افزایش می‌یابد. این در حالی است که افزودن ذرات روان‌کار موجب می‌شود این ضریب به‌گونه قابل توجهی کاهش یابد. با این حال در تمامی دماهای سایش، پوشش دارای ذرات گرافیت کم‌ترین ضریب اصطکاک را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Gr and MoS2 Particles on High Temperature Tribological Properties of Ni-SiC Composite Coating

نویسندگان [English]

  • M. Fazel 1
  • M.R. Garsivaz jazi1 1
  • S. Bahramzadeh 2
  • S.R. Bakhshi 3
  • M. Ramazani 3
  • A. Bahramian 3
چکیده [English]

Ni–SiC composite coatings are successfully employed as a protective coating in the inner walls of engine cylinders. In this study, Ni-SiC, Ni-SiC-MoS2 and Ni-SiC-Gr composite coatings were prepared from a sulfamate bath. Both mechanical and ultrasonic stirring were used simultaneously during the process. Taking into account the working temperature of engine cylinders, the wear behavior of coatings was evaluated at 25 to 300 ºC and the high temperature tribological properties of the coatings were investigated. Based on the results obtained from the wear tests, all three coatings showed almost good friction coefficient values at 25 and 100 ºC, which were close to each other. By increasing the temperature to 200-300 °C, the friction coefficient and weight loss values strongly increased. However, addition of solid lubricants caused the values to decrease. The Ni-SiC-Gr coating at all temperatures showed a good and stable behavior.

کلیدواژه‌ها [English]

  • Co-deposition
  • Ni-SiC composite coating
  • Solid lubricant particles
  • Tribological behavior
1. Eijsbouts, S., Van Den Oetelaar, L.C.A. and Van
Puijenbroek, R.R., "MoS2 Morphology and Promoter
Segregation in Commercial Type 2 Ni–Mo/Al2O3 and
Co–Mo/Al2O3 Hydroprocessing Catalysts", Journal
of Catalysis, Vol. 229, pp. 352–364, 2005. 2. Wu, Y., Liu, L., Shen, B. and Hu, W., "Study of
Self-lubricant Ni-P-PTFE-SiC Composite Coating",
Journal of Materials Science, Vol. 40, pp. 5057- 5059, 2005. 3. Heidari, G., Tavakoli, H. and Mousavi Khoie, S.M.,
"Nano SiC-Nickel Composite Coatings from a
Sulfamat Bath Using Direct Current and Pulsed
Direct Current", Journal of Materials Engineering
and Performance, Vol. 19, pp. 1183-1188, 2010. 4. Vaezi, M.R., Sadrnezhaad, S.K. and Nikzad, L.,
"Electrodeposition of Ni–SiC Nano-Composite
Coatings and Evaluation of Wear and Corrosion
Resistance and Electroplating Characteristics",
Colloids and Surfaces A: Physicochem and
Engineering Aspects, Vol. 315, pp. 176–182, 2008. 5. Wang, P., Cheng, Y. and Zhang, Z., "A Study on the
Electrocodeposition Processes and Properties of
Ni–SiC Nanocomposite Coatings", Journal of
Coatings Technology and Research, Vol. 8, pp. 409–
417, 2011. 6. Bratu, F., Benea, L. and Celis, J., "Tribocorrosion
Behaviour of Ni–SiC Composite Coatings Under
Lubricated Conditions", Surface & Coatings
Technology, Vol. 201, pp. 6940–6946, 2007. 7. Lipp, L.C., "Solid Lubricants- Their Advantages and
Limitations”, Lubrication Engineering, Vol. 32, pp. 574–584, 1975. 8. Brudnyi, A.I. and Karmadonov, A.F., "Structure of
Molybdenum Disulphide Lubricant Film”, Wear, Vol. 33, pp. 243–249, 1975. 9. García-Lecina, E., García-Urrutia, I., Díez, J.A.,
Fornell, J. Pellicer, E. and Sort, J., “Codeposition of
Inorganic Fullerene-Like WS2 Nanoparticles in an
Electrodeposited Nickel Matrix Under the Influence
of Ultrasonic Agitation”, Electrochimica Acta, Vol. 114, pp. 859–867, 2013. 10. Shankara, A. , Menezes, P.L. , Simha, K.R.Y. and
Kailas, S.V., "Study of Solid Lubrication with MoS2 Coating in the Presence of Additives Using
Reciprocating Ball-on-Flat Scratch Tester", Sadhana, Vol. 33, pp. 207–220, 2008. 11. Guo, M.L.T. and Tsao, C.Y.A. , "Tribological
Behavior of Aluminum/SiC/Nickel-Coated Graphite
Hybrid Composites", Materials Science and
Engineering A, Vol. 333, pp. 134–145, 2002. 12. Bahaaideen, F.B., Ripin, Z.M. and Ahmad, Z.A.,
"Electroless Ni-P-Cg(Graphite)-SiC Composite
Coating and its Application onto Piston Rings of a
Small Two Stroke Utility Engine", Journal of
Scientific & Industrial Research, Vol. 69, pp. 830-
834, 2010.
14. Cardinal, M.F. , Castro, P.A., Baxi, J., Liang, H.
and Williams, F.J., "Characterization and Frictional
Behavior of Nanostructured Ni–W–MoS2 Composite
Coatings", Surface & Coatings Technology, Vol. 204, pp. 85–90, 2009. 15. Huang, Z. and Xiong, D., "MoS2 Coated with Al2O3 for Ni–MoS2/Al2O3 Composite Coatings by Pulse
Electrodeposition", Surface & Coatings Technology, Vol. 202, pp. 3208–3214, 2008. 16. MA, K., Guo, Z., Zhu, X. and Xu, R.,
"Characteristics of Electrodeposited RE-Ni-W-B- B4C-MoS2 Composite Coating", Transactions of
Nonferrous Metals Society of China, Vol. 13, pp. 1220-1225, 2003. 17. Wu, B., Yu, X., Zhang, B. and Xu, B., "Preparation
and Characterization of Graphite–Nickel Composite
Coatings by Automatic Brush Plating", Surface &
Coatings Technology, Vol. 202, pp. 1975–1979, 2008. 18. Cai, B. , Tan, Y., Tu, Y., Wang, X. and Xu, T.,
"Effects of Graphite Content on Microstructure and
Tribological Properties of Graphite/TiC/Ni-base
Alloy Composite Coatings", Transactions of
Nonferrous Metals Society of China, Vol. 21, pp. 1741-1749, 2011. 19. Pavlatou, E.A., Stroumbouli, M. and Gyftou, P.,
"Hardening Effect Induced by Incorporation of SiC
Particles in Nickel Electrodeposits", Journal of
Applied Electrochemistry, Vol. 36, pp. 385-394, 2006. 20. Zimmerman, A.F., Clark, D.G., Aust, K.T. and Erb,
U., "Pulse Electrodeposition of Ni-SiC
Nanocomposite", Materials Letters, Vol. 52, pp. 85- 90, 2002. 21. Wang, S. and Wei, W.J., "Characterization of
Electroplated Ni/SiC and Ni/Al2O3 Composite
Coatings Bearing Nanoparticles", Journal of
Materials Research, Vol. 18, pp. 1566-1574, 2003. 22. Dieter, G.E., Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986. 23. Cai, C., Zhu, X.B., Zheng, G.Q., Yuan, Y.N.,
Huang, X.Q., Cao, F.H. , Yang, J.F. and Zhang, Z.,
"Electrodeposition and Characterization of
Nano-Structured Ni–SiC Composite Films", Surface
& Coatings Technology, Vol. 205, pp. 3448–3454, 2011. 24. Lekka, M., Lanzutti, A., Casagrande, A., De
Leitenburg, C., Bonora, P.L. and Fedrizzi, L.,
"Room and High Temperature Wear Behaviour of
Ni Matrix Micro- and Nano-SiC Composite
Electrodeposits", Surface & Coatings Technology, Vol. 206, pp. 3658–3665, 2012. 25. Lekka, M., Kouloumbi, N., Gajo, M. and Bonora,
P.L., "Corrosion and Wear Resistant
Electrodeposited Composite Coatings",
Electrochimica Acta, Vol. 50, pp. 4551–4556, 2005

ارتقاء امنیت وب با وف بومی