مقایسه فوق آب‌گریزی و رفتار خوردگی پوشش‌های میکرو- نانو ساختار نیکل و نیکل- کبالت بر روی زیرلایه مس

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

در این پژوهش، پوشش­ های فوق آب­گریز نیکل و نیکل- کبالت با ساختار مخروطی میکرو- نانومتری توسط یک و دو مرحله رسوب‌دهی با جریان ­های مستقیم روی زیرلایه مسی تولید شدند. با استفاده از میکروسکوپ الکترونی روبشی، آزمون اندازه‌گیری زاویه تماس، آزمون امپدانس الکتروشیمیایی و پلاریزاسیون تافل، ساختار، ترشوندگی و مقاومت به خوردگی نمونه ­ها ارزیابی شد. نتایج نشان داد که با قرارگیری نمونه­ ها در معرض هوا به‌مدت دو هفته، رفتار ترشوندگی پوشش­ های میکرو- نانو ساختار پایه نیکل از حالت فوق­آب‌دوستی به فوق‌آب‌گریزی تغییر می­کند. نتایج حاصل از آزمون­ های خوردگی نشان داد که تغییر رفتار ترشوندگی از حالت آب­دوستی به آب‌گریزی سبب افزایش مقاومت به‌ خوردگی پوشش نیکل (10 برابر) و پوشش نیکل- کبالت (100 برابر) نسبت به پوشش‌های اولیه آن­ها شده است. مقایسه رفتار دو نوع پوشش نشان داد که پوشش فوق آب‌گریز نیکل از مقاومت به خوردگی بالاتری نسبت به پوشش فوق آب‌گریز نیکل-کبالت برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Super-Hydrophobicity and Corrosion Resistance of Micro-Nano Structured Nickel and Nickel- Cobalt Alloy Coatings on Copper Substrate

نویسندگان [English]

  • S. Khorsand
  • K. Raeissi
  • F. Ashrafizadeh
Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
چکیده [English]

Super-hydrophobic nickel and nickel-cobalt alloy coatings with micro-nano structure were successfully electrodeposited on copper substrates with one and two steps electrodeposition. Surface morphology, wettability and corrosion 

resistance were characterized by scanning electron microscopy, water contact angle measurements, electrochemical impedanc spectroscopy (EIS) and potentiodynamic polarization curves. The results showed that the wettability of the micro-nano Ni and Ni-Co films varied from super-hydrophilicity to super-hydrophobicity by exposure of the surface to air at room temperature. The corrosion results revealed the positive effect of hydrophobicity on corrosion resistance of Ni coating (~10 times) and Ni-Co coating (~100 times) in comparison with their fresh coatings. The results showed that super-hydrophobic nickel coating had higher corrosion resistance than super-hydrophobic nickel-cobalt coating.

کلیدواژه‌ها [English]

  • Nickel
  • electrodeposition
  • Super-hydrophobic
  • Micro-nano structure
  • corrosion resistance
1. Guo, Z., Liu, W. and Su, B.L., \"Superhydrophobic Surfaces: from Natural to Biomimetic to Functional\", Journal of colloid and interface science, Vol. 353, pp. 335-355, 2011.
2. Ma, M. and Hill, R.M., \"Superhydrophobic Surfaces”, Current Opinion in Colloid & Interface Science,
Vol. 11, pp. 193-202, 2006.
3. Celia, E., Darmanin, T., Taffin de Givenchy, E., Amigoni, S. and Guittard, F., \"Recent Advances in Designing Superhydrophobic Surfaces”, Journal of Colloid and Interface Science, Vol. 402, pp. 1-18, 2013.
4. Barkhudarov, P.M., Shah, P.B., Watkins, E.B., Doshi, D.A., Brinker, C.J. and Majewski, J., \"Corrosion Inhibition Using Superhydrophobic Films”, Corrosion Science, Vol. 50, pp. 897-902, 2008.
5. Liu, T., Yin, Y., Chen, S., Chang, X. and Cheng, S., \"Super-Hydrophobic Surfaces Improve Corrosion Resistance of Copper in Seawater”, Electrochimica Acta, Vol. 52, pp. 3709-3713, 2007.
6. Ou, J., Liu, M., Li, W., Wang, F., Xue, M. and Li, C., \"Corrosion Behavior of Superhydrophobic Surfaces of Ti Alloys in NaCl Solutions\", Applied Surface Science, Vol. 258, pp. 4724-4728, 2012.
7. Wang, P., Zhang, D., Qiu, R. and Hou, B., \"Super-Hydrophobic Film Prepared on Zinc as Corrosion barrier”, Corrosion Science, Vol. 53, pp. 2080-2086, 2011.
8. Xue, C.H., Jia, S.T., Zhang, J., Tian, L.Q., Chen, H.Z. and Wang, M., \"Preparation of Superhydrophobic Surfaces on Cotton Textiles”, Science and Technology of Advanced Materials, Vol. 9,
pp. 035008, 2008.
9. Hang, T., Hu, A., Ling, H., Li, M. and Mao, D., \"Super-Hydrophobic Nickel Films with Micro-Nano Hierarchical Structure Prepared by Electrodeposition”, Applied Surface Science,
Vol. 256, pp. 2400-2404, 2010.
10. Qiu, R., Zhang, D. and Wang, P., \"Superhydrophobic - Carbon Fibre Growth on a Zinc Surface for Corrosion Inhibition”, Corrosion Science, Vol. 66, pp. 350-359, 2013.
11. Shafiei, M. and Alpas, A.T. \"Nanocrystalline Nickel Films with Lotus Leaf Texture for Superhydrophobic and Low Friction Surfaces”, Applied Surface Science, Vol. 256, pp. 710-719, 2009.
12. Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H. and Fotakis, C., \"Bio-Inspired Water Repellent Surfaces produced by Ultrafast Laser Structuring of Silicon”, Applied Surface Science, Vol. 255, pp. 5425-5429, 2009.
13. Bizi-bandoki, P., Valette, S., Audouard, E. and Benayoun, S., \"Time Dependency of the Hydrophilicity and Hydrophobicity of Metallic Alloys Subjected to Femtosecond Laser Irradiations”, Applied Surface Science, Vol. 273, pp. 399-407, 2013.
14. Hong, Y.C., Cho, S.C., Shin, D.H., Lee, S.H. and Uhm, H.S., \"A Facile Method for the Fabrication of Super-Hydrophobic Surfaces and Their Resulting Wettability”, Scripta Materialia, Vol. 59, pp. 776-779, 2008.
15. Huang, L., Liu, Z., Liu, Y. and Gou, Y., \"Preparation and Anti-Frosting Performance of Super-Hydrophobic Surface Based on Copper Foil”, International Journal of Thermal Sciences, Vol. 50, pp. 432-439, 2011.
16. Barthlott, W. and Neinhuis, C., \"Purity of the sacred Lotus, or Escape from Contamination in Biological Surfaces”, Planta, Vol. 202, pp. 1-8, 1997.
17. Yang, R., Asatekin, A. and Gleason, K.K., \"Design of Conformal, Substrate-Independent Surface Modification for Controlled Protein Adsorption by Chemical Vapor Deposition (CVD)”, Soft Matter, Vol. 8, pp. 31-43, 2012.
18. Lakshmi, R., Bharathidasan, T., Bera, P. and Basu, B.J., \"Fabrication of Superhydrophobic and Oleophobic Sol–Gel Nanocomposite Coating”, Surface and Coatings Technology, Vol. 206,
pp. 3888-3894, 2012.
19. Ahmad, N., Leo, C. and Ahmad, A., \"Synthesis of Superhydrophobic Alumina Membrane: Effects of Sol–Gel Coating, Steam Impingement and Water Treatment”, Applied Surface Science, Vol. 284,
pp. 556-564, 2013.
20. Fan, Y., Li, C., Chen, Z. and Chen, H., \"Study on Fabrication of the Superhydrophobic Sol–Gel Films Based on Copper Wafer and its Anti-Corrosive properties\", Applied Surface Science, Vol. 258,
pp. 6531-6536, 2012.
21. Nakajima, A., Abe, K., Hashimoto, K. and Watanabe, T., \"Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission”, Thin Solid Films, Vol. 376,
pp. 140-143, 2000.
22. Xi, W., Qiao, Z., Zhu, C., Jia, A. and Li, M., \"The Preparation of Lotus-Like Super-Hydrophobic Copper Surfaces by Electroplating”, Applied surface science, Vol. 255, pp. 4836-4839, 2009.
23. Kang, C., Lu, H., Yuan, S., Hong, D., Yan, K. and Liang, B., \"Superhydrophilicity/Superhydrophobicity of Nickel Micro-Arrays Fabricated by Electroless Deposition on an Etched Porous Aluminum Template”, Chemical Engineering Journal, Vol. 203, pp. 1-8, 2012.
24.Wang, S., Wang, C., Liu, C., Zhang, M., Ma, H. and Li, J., \"Fabrication of Superhydrophobic Spherical-Like α-FeOOH Films on the Wood Surface by a Hydrothermal method”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 403, pp. 29-34, 2012.
25. Tian, F., Hu, A., Li, M. and Mao, D., \"Superhydrophobic Nickel Films Fabricated by Electro and Electroless deposition”, Applied Surface Science, Vol. 258, pp. 3643-3646, 2012.
26. Geng, W., Hu, A. and Li, M., \"Super-Hydrophilicity to Super-Hydrophobicity Transition of a Surface with Ni Micro–Nano Cones Array”, Applied Surface Science, Vol. 263, pp. 821-824, 2012.
27. Chen, Z., Tian, F., Hu, A. and Li, M., \"A Facile Process for Preparing Superhydrophobic Nickel Films with Stearic Acid”, Surface and Coatings Technology, Vol. 231, pp. 88-92, 2013.
28. Hang, T., Ling, H., Hu, A. and Li, M., \"Growth Mechanism and Field Emission Properties of Nickel Nanocones Array Fabricated by One-Step Electrodeposition”, Journal of The Electrochemical Society, Vol. 157, pp. D624-D627, 2010.
29. Brassard, J.D., Sarkar, D.K., Perron, J., Audibert-Hayet, A. and Melot, D., \"Nano-Micro Structured Superhydrophobic Zinc Coating on Steel for Prevention of Corrosion and Ice Adhesion”, Journal of colloid and interface science, Vol. 447, pp. 240-247, 2014.
30. Qiu, R., Zhang, D., Wang, P., Zhang, X.L. and Kang, Y.S., \"Tunable Electrochemical Preparation of Cobalt Micro/Nanostructures and their Morphology-Dependent Wettability Property”, Electrochimica Acta, Vol. 58, pp. 699-706, 2011.
31. Liang, J., Li, D., Wang, D., Liu, K. and Chen, L., \"Preparation of Stable Superhydrophobic Film on Stainless Steel Substrate by a Combined Approach Using Electrodeposition and Fluorinated Modification”, Applied Surface Science, Vol. 293,
pp. 265-270, 2014.
32. Kong, D., Chen, Y., Wan, P., Liu, S., Khan, Z. and Men, B., \"Pre-Plating of Bismuth Film Electrode with Coexisted Sn2+ in Electrolyte”, Electrochimica Acta, Vol. 125, pp.573–579, 2014.
33. Wenzel, R.N., \"Surface Roughness and Contact Angle”, The Journal of Physical Chemistry, Vol. 53, pp. 1466-7, 1994.
34. Wenzel, R.N., \"Resistance of Solid Surfaces to Wetting by Water”, Industrial & Engineering Chemistry, Vol. 28, pp. 988-994, 1936.
35. Wang, G. and Zhang, T.Y., \"Oxygen Adsorption Induced Superhydrophilic-to-Superhydrophobic Transition on Hierarchical Nanostructured CuO Surface”, Journal of Colloid and Interface Science, Vol. 377, pp. 438-341, 2012.
36. Long, J., Zhong, M., Zhang, H. and Fan, P., \"Superhydrophilicity to Superhydrophobicity Transition of Picosecond Laser Microstructured Aluminum in Ambient Air”, Journal of Colloid and Interface Science, Vol. 441, pp. 1-9, 2015.
37. Grosvenor, A.P., Biesinger, M.C., Smart, R.S.C. and McIntyre, N.S., \"New Interpretations of XPS Spectra of Nickel Metal and Oxides”, Surface Science,
Vol. 600, pp. 1771-1779, 2006.
38. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R. and Smart,R.S.C., \"Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni”, Applied Surface Science,
Vol. 257, pp. 2717-2730, 2011.
39. Liu, P., Cao, L., Zhao, W., Xia, Y., Huang, W. and Li, Z., \"Insights into the Superhydrophobicity of Metallic Surfaces Prepared by Electrodeposition Involving Spontaneous Adsorption of Airborne Hydrocarbons\", Applied Surface Science, Vol. 324, pp. 576-583, 2015.
40. Khorsand, S., Raeissi, K. and Ashrafizadeh, F., \"Corrosion Resistance and Long-Term Durability of Super-Hydrophobic Nickel Film Prepared by Electrodeposition Process”, Applied Surface Science, Vol. 30, pp. 498-505, 2014.
41. Igual Munoz, A., Garcia Anton, J., Guiñón, J. and Pérez Herranz, V., \"The Effect of Chromate in the Corrosion Behavior of Duplex Stainless Steel in LiBr Solutions”, Corrosion Science, Vol. 48, pp. 4127-4151, 2006.
42. Khorsand, S., Raeissi, K. and Golozar, M., \"Effect of Oxalate Anions on Zinc Electrodeposition from an Acidic Sulphate Bath”, Journal of The Electrochemical Society, Vol. 158, pp. D377-D383, 2011.
43. Bico, J., Thiele, U. and Quéré, D., \"Wetting of textured surfaces”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 206, pp. 41-46, 2002.

ارتقاء امنیت وب با وف ایرانی