تهیه و مشخصه‌یابی پوشش‌های هیبریدی سیلیکا- زیرکونیا حاوی بازدارنده سریم بر آلیاژ آلومینیوم 6061

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، شاهین شهر، اصفهان

چکیده

در این پژوهش پوشش‌های هیبریدی آلی- غیر آلی به روش سل- ژل تهیه و بر آلیاژ آلومینیوم 6061 اعمال شد. مشخصه‌یابی پوشش‌ها با استفاده از طیف سنجی تبدیل فوریه فرو سرخ و میکروسکوپ الکترونی روبشی انجام شد. چسبندگی پوشش به زیرلایه به دو روش کمی و کیفی مورد بررسی قرار گرفت. آزمون پتانسیودینامیک چرخه‌ای و قطبش خطی برای ارزیابی رفتار خوردگی انجام شد. نتایج نشان داد که با افزایش مقدار زیرکونیوم تتراپروپوکساید و سریم استحکام چسبندگی پوشش به زیرلایه افزایش یافت. بررسی رفتار خوردگی نشان داد که چگالی جریان خوردگی نمونه‌های پوشش داده شده 103 تا 107 برابر نسبت به آلیاژ آلومینیوم 6061 بدون پوشش کاهش یافت. با افزایش مقدار زیرکونیوم و سریم در ترکیب پوشش چگالی جریان خوردگی کاهش و مقاومت قطبش افزایش یافت. پوشش‌های بدون ترک بر خلاف آلیاژ آلومینیوم 6061 مستعد به حفره‌دار شدن نبودند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and Characterization of Hybrid Silica-Zirconia Coatings with Cerium Inhibitor on Aluminum 6061

نویسندگان [English]

  • M. Bahrami
  • G.H. Borhani
  • S.R. Bakhshi
  • A. Ghasemi
چکیده [English]

Organic–inorganic hybrid coatings were prepared by sol–gel method and deposited on aluminum alloy 6061. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were used for structural study of the hybrid coatings. Adhesive strength of sol–gel coatings to the substrate was evaluated quantitatively and qualitatively. Corrosion behavior of the samples was studied by cyclic potentiodynamic and linear polarization tests. Results showed that adhesion strength of the coatings to the substrates was increased with increasing tetrapropoxide of zirconium (TPOZ) and cerium content. Corrosion tests showed that corrosion current density of coated samples were decreased three to seven orders of magnitude in comparison with uncoated aluminum alloy 6061. Decreasing in corrosion current density and increasing in polarization resistance was observed by increasing zirconia and cerium content. Unlike the uncoated aluminum alloy 6061, the crack-free coatings did not show pitting tendency. 

کلیدواژه‌ها [English]

  • Hybrid coating
  • Sol-gel
  • Adhesion strength
  • Corrosion
1. Kim, N.J., Totten, G.E., Xie, L. and Fanatani, K., “Designing with Aluminum Alloys”, Handbook of Mechanical Alloying Design, Springer, New York, 2004.
2. Frommeyer, G., Knippscgeer, S., Totten, G.E. and Mackenzie, D.S., “Aluminum-Based Metal Matrix Composites”, Aluminum Handbook, Vol. 2, Marcel Dekker, 2003.
3. Yang, Zh., Wei, Zh., Le-Ping, L., Si-Jie, W. and Wu-Jun, L., “Self-Healing Coatings Containing Microcapsule”, Applied Surface Science, Vol. 258, PP. 1915– 1918, 2012.
4. Yasakau, K.A., Zheludkevich, M.L., Karavai, O.V. and Ferreira, M.G.S., “Influence of Inhibitor Addition on the Corrosion Protection Performance of Sol–Gel Coatings on AA2024”, Progress in Organic Coatings, Vol. 63, PP. 352–361, 2008.
5. Osborne, J.H., “Observations on Chromate Conversion Coatings from a Sol-Gel Perspective”, Progress in Organic Coatings, Vol. 41, PP. 280-286, 2001.
6. Mekeridis, E.D., Kartsonakis, I.A. and Kordas, G., “Electro-Deposited Sol-Gel Coatings Containing Ceramic Nanocontainers Loaded with Inhibitors for the Corrosion Protection of AA2024-T3”, Advances in Ceramic Science and Engineering, Vol. 1, PP.328-337, 2012.
7. Giancarlo, R., Salaza, R. and Artur, J., “Anticorrosive Cerium-Based Coatings Prepared by the Sol–Gel Method”, Sol-Gel Science Technology, Vol. 52, PP. 415–423, 2009.
8. Fahrenholtz, W.G., OKeefe, M.J., Zhou, H. and Grant, J.T., “Characterization of Cerium-Based Conversion Coatings for Corrosion Protection of Aluminum Alloys”, Surface and Coatings Technology, Vol. 155, PP. 208-213, 2002.
9. Wen, J. and Wikes, G.L., “Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach”, Chemistry of Materials, Vol. 8, PP. 1667-1672, 1996.
10. Innocenzi, P., Abdirashid, M.O. and Guglielmi, M., “Corrosion Behavior of Hybrid Sol–Gel Coatings”, Sol–Gel Science Technology,Vol. 3, PP. 47-56, 1994.
11. Lamaka, S.V., Montemor, M.F., Galio, A.F., Zheludkevich, M.L., Trindade, C., Dick, L.F. and Ferreira, M.G.S., “Novel Hybrid Sol–Gel Coatings for Corrosion Protection of AZ31B Magnesium Alloy”, Electrochimica Acta, Vol. 53, PP.4773–4783, 2008.
12. Andreatta, F., Paussa, L., Lanzutti, A. and Rosero Navarro, N.C., “Development and Industrial Scale-Up of ZrO2 Coatings and Hybrid Organic–Inorganic Coatings Used as Pre-Treatments before Painting Aluminum Alloys”, Progress in Organic Coatings, Vol. 72, PP. 3– 14, 2011.
13. Evaggelos, D., Ioannis, A. and George, C., “Multilayer Organic–Inorganic Coating Incorporating TiO2 Nanocontainers Loaded with Inhibitors for Corrosion Protection of AA2024-T3”, Progress in Organic Coatings, Vol. 73, PP.142– 148, 2012.
14. Collazo, A., Covelo, A., Izquierdo, M. and Novoa, X.R., Perez, C., “Effect of the Experimental Setup in the Behaviour of Sol-Gel Coatings”, Progress in Organic Coatings, Vol. 63, PP. 291–298, 2008.
15. Poznyak, S.K., Zheludkevich, M.L. and Raps, D., “Preparation and Corrosion Protective Properties of Nanostructured Titania-Containing Hybrid Sol-Gel Coatings on AA2024”, Progress in Organic Coatings, Vol. 62, PP.226–235, 2008.
16. Roussi, E., Tsetsekou, A., Tsiourvas, D. and Karantonis, A., “Novel Hybrid Organo-Silicate Corrosion Resistant Coatings Based on Hyperbranched Polymers”, Surface and Coatings Technology, Vol. 205, PP. 3235–3244, 2011.
17. Phanasgaonkar, A. and Raja, V.S., “Influence of Curing Temperature, Silica Nanoparticles- and Cerium on Surface Morphology and Corrosion Behaviour of Hybrid Silane Coatings on Mild Steel”, Surface and Coatings Technology, Vol. 203,
PP. 2260–2271, 2009.
18. Joshua Dua, Y., Damrona, M., Tang, G., Zheng, H., “Inorganic/Organic Hybrid Coatings for Aircraft Aluminum Alloy Substrates”, Progress in Organic Coating, Vol. 41, PP. 226–232, 2001.
19. Sanchez, C., Ribot, F., Lebeau, B., “Molecular Design of Hybrid Organic-Inorganic Nanocomposites Synthesized Via Sol–Gel Chemistry”, Materials Chemistry, Vol. 9, PP. 35–44, 1999.
20. Sharp, K.G., “Inorganic/Organic Hybrid Materials”, Advanced Materials, Vol. 10, PP. 1243–1248, 1998.
21. Buchheit, R.G., Guan, H., Mahajanam, S. and Wong, F., “Active Corrosion Protection and Corrosion Sensing in Chromate-Free Organic Coatings” v, Progress in Organic Coatings, Vol. 47, PP. 174-182, 2003.
22. ASTM D3359-09, Standard Test Methods for Measuring Adhesion by Tape Test, 2nd Ed.,
Vol. 06.01.
23. ASTM D4541-09, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, 1st Ed., Vol. 06.02.
24. Bell, R.J. and Dean, P., “Properties of Vitreous Silica: Analysis of Random Network Models”, Nature, Vol. 212, PP. 1354-1356, 1966.
25. Boerio, F.J., “Infrared Spectra of Polymers and Coupling Agents Adsorbed onto Oxidized Aluminum”, Polymer Preprint, Vol. 22, PP. 297-304, 1983.
26. Metroke, T.L., Kachurina, O. and Knobbe, E.T., “Spectroscopic and Corrosion Resistance Characterization of GLYMO-TEOS Ormosil Coatings for Aluminum Alloy Corrosion Inhibition”, Progress in Organic Coatings, Vol. 44, PP. 295-302, 2002.
27. Tiwari, S.K., Adhikary, J., Singh, T.B. and Singh, R., “Preparation and Characterization of Sol-Gel Derived Yttria Doped Zirconia Coatings on AISI 316L”, Thin Solid Films, Vol. 517, PP. 4502-4508, 2009.
28. Barglik-Chory, C. and Schubert, U., "Organically Substituted Titanium Alkoxides with Unsaturated Organic Groups”, Journal of Sol-Gel Science and Technology, Vol. 5, PP. 135-142, 1995.
29. Méndez-Vivar, J., Mendoza-Serna, R. and Valdez-Castro. L., “Control of the Polymerization Process of Multicomponent (Si, Ti, Zr) Sols Using Chelating Agents”, Journal of Non-Crystalline Solids,
Vol. 288, PP. 200-209, 2001.
30. Yang, C., Dong, Q.N., Ren, J. and Sun, Y.H., Spectroscopic Spectral Analysis, Vol. 24, PP. 810- , 2004.
31. Amani, M., Ebrahim and Teresa J. and Bandos, Z., “Carbon Coated Silica Doped With Cerium/Zirconium Mixed Oxides as NO2 Adsorbent at Ambient Conditions”, Journal of Physical Chemistry, Vol. 118, PP. 8982−8992, 2014.
32. Gotze, J., Mockel, R., Langhof, N., Hengst, M. and Klinger, M., “Silicification of Wood in the Laboratory”, Ceramics, Vol. 52, PP. 268-277, 2008.
33. Shi, H., Liu, F. and Han, E., “Corrosion Behaviour of Sol-Gel Coatings Doped with Cerium Salts on 2024-T3 Aluminum Alloy”, Materials Chemistry and Physics, Vol. 124, PP. 291–297, 2010.
34. Bajet, J.B., Miskovic-Stankovic, V.B. and Kacarevic-Popovic, Z., “Corrosion Stability of Epoxy Coating on Aluminum Pretreated by Vinyltriethoxysilan”, Journal of Corrosion Science, Vol. 50, PP. 2078- 2008.
35. Pickup, D.M., Mountjoy, G., Wallidge, G.W., Newport, R.J. and Smith, M.E., “Structure of (ZrO2) X (SiO2)1-X Xerogels (X= 0.1, 0.2, 0.3 and 0.4) from FTIR, 29Si and 17O NMR and EXAFS”, Physical Chemistry Chemical Physics, Vol. 1,
PP. 2527-2533, 1999.
36. May, M., Wang, H., Akid, R., “Bond Strength of Hybrid Sol–Gel Coatings with Different Additives”, Journal of Coating Technology Research, Vol. 10, PP. 407–413, 2013.
37. Fu, C.J., Zhan, Z. W., Yu, M., Li, S.M., Liu, J.H. and Dong, L., “Influence of Zr/Si Molar Ratio on Structure, Morphology and Corrosion Resistance of Organosilane Coatings Doped with Zirconium(IV)
n-propoxide”, Internatiional Journal of Electrochemical Science, Vol. 9, PP. 2603–2619, 2014.
38. Wang, Zh., Wu, L., Qi, Y. and Jiang, Zh., “In-Situ Formation of Al2O3–SiO2–SnO2 Composite Ceramic Coating by Microarc Oxidation on Al–20%Sn Alloy”, Applied Surface Science, Vol. 256,
PP. 3443–3447, 2010.
39. Varma, P.C. R., Colreavy, J., Cassidy, J., Oubaha, M., McDonagh, C. and Duffy, B., “Corrosion Protection of AA 2024-T3 Aluminum Alloys Using 3, 4-Diaminobenzoic Acid Chelated Zirconium–Silane Hybrid Sol–Gels”, Thin Solid Films, Vol. 518, PP. 5753–5761, 2010.

ارتقاء امنیت وب با وف بومی