تأثیر روش ساخت بر فرایند تشکیل فاز و ویژگی‌های ساختاری و مغناطیسی نمونه‌های Mn2.5Ge

نویسندگان

1 1- آزمایشگاه تحقیقات و فناوری مغناطیس دانشکده فیزیک، دانشگاه یزد

2 2- آزمایشگاه نانوفیزیک و مغناطیس، دانشکده فیزیک، دانشگاه یزد

3 3- آزمایشگاه ابررسانائی و مغناطیس، دانشکده فیزیک، دانشگاه صنعتی اصفهان

چکیده

در این پژوهش فرایند تشکیل فاز نمونه­های Mn2.5Ge از پودرهای فلزی Mn و Ge با روش آلیاژسازی و تأثیر بازپخت محصول نهایی مورد مطالعه قرار گرفته است. نتایج نشان داد فاز پایدار در فرایند آسیاب­کاری، ترکیب Mn11Ge8 با ساختار اورتورومبیک و گروه فضایی Pnam است. مقادیر مغناطش اشباع نمونه های آسیاب کاری شده با زمان اسیاب از مقدار 2/0 تا 95/1 (kg-1Am2) افزایش می یابد. باقی‌ماندگی نمونه­ها نیز با افزایش زمان آسیاب­کاری افزایش و میدان وادارندگی نمونه­ها با افزایش زمان آسیاب­کاری کاهش یافته است. بازپخت نمونه­ 15 ساعت آسیاب­کاری شده به حذف فازهای Mn و Ge و ظهور چهار فاز جدید Mn3Ge و Mn5Ge2 و Mn5Ge3 و Mn2.3Ge منجر شد، که فاز جدید Mn3Ge با ساختار) Do22 تتراگونال ( و گروه فضاییI4/mmm  فاز پایدار و غالب است. افزایش مغناطش اشباع نمونه­ بازپختی به شکل­گیری فازهای مغناطیسی جدید و افزایش میدان وادارندگی به فاز Mn3Ge با ساختار تتراگونال نسبت داده شده است. برای تعدادی نمونه که با روش ذوب قوسی ساخته شده بود، مطالعات توسعه یافت تا با مقایسه نتایج، تأثیر روش ساخت بر فرایند تشکیل فاز و ویژگی­های ساختاری و مغناطیسی نیز مطالعه شود. در این نمونه‌ها بسته به‌روش ساخت، مقادیر مغناطش اشباع در بازه 6/0 تا 65/5 (kg-1Am2) قرار داشتند. تحلیل ریتولد نشان داد نمونه­ Mn2.5Ge ساخته شده به‌روشس ذوب قوسی که فرایند تکمیلی بازپخت در دمای 620 درجه سانتی‌گراد روی آن صورت گرفت، تک فاز است، که در نتیجه آن ترکیب Mn2.5Ge با مغناطش اشباع (kg-1Am2) 252/5 و میدان وادارندگی 005/0 تسلا به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Preparation Method on Phase Formation Process and Structural and Magnetic Properties of Mn2.5Ge Samples

نویسندگان [English]

  • R. Sobhani 1
  • M. Hakimi 1
  • M. Khajeh Aminian 2
  • P. Kameli 3
1 1-Research and technology of Magnetism Lab., Physics Department, Yazd University, Yazd.
2 2- Nanophysics and Magnetism Lab., Physics Department, Yazd University, Yazd.
3 3- Laboratory of Superconductivity and Magnetism, Physics Department, Isfahan University of Technology, Isfahan.
چکیده [English]

In this paper, the phase formation process of Mn2.5Ge samples, prepared by mechanical alloying of Mn and Ge metal powders and annealing, has been studied. Results showed that in the milled samples the stable phase is Mn11Ge8 compound with orthorhombic structure and Pnam space group. The value of saturation magnetization increases by increasing milling time from 0.2 up to 1.95 (Am2Kg-1). The remanece of the samples increases by increasing the milling time while the coercivity decreases. Annealing of 15-hour milled sample results in disappearance of Mn and Ge and the formation of new phases of Mn3Ge, Mn5Ge2, Mn5Ge3 and Mn2.3Ge. Mn3Ge is the main phase with Do22 tetragonal structure and I4/mmm space group which is stable and dominant. The enhancement of saturation magnetization in the annealed sample is related to the formation of three new magnetic phases and the increase of coercivity is due to the presence of Mn3Ge compound with tetragonal structure. Studies were replicated on samples made by arc melting method to compare the results and to investigate the effect of the preparation method on phase formation and structural and magnetic properties of the materials. In these samples the saturation value was in range of 0.2 up to 1.95 (Am2Kg-1) depending on preparation methods. Rietveld refinement shows that Mn2.3Ge sample prepared from arc melted under 620oC anealing is single phase. Magnetic analysis of this sample show a saturation magnetization of 5.252(Am2Kg-1) and 0.005 T coercive field.

کلیدواژه‌ها [English]

  • magnetization
  • crystal structure
  • Heusler
  • Manganese
  • mechanical alloying
  • Arc melting
1. Felser, C., Fecher, G. H. and Balke, B., "Spintronics: A Challenge for Materials Science and Solid‐State Chemistry ", Angewandte Chemie International Edition, Vol. 46, pp. 668-699,‏ 2007.
2. Carey, R., Newman, D. M. and Wears, M. L., "Giant Low-Temperature Enhancement of Magneto-Optic Kerr effects in PtMnSb", Physical Review B, Vol. 62,
p. 1520, 2000.
3. De Groot, R. A., Mueller, F. M., Van Engen, P. G. and Buschow, K. H. J., "New Class of Materials: Half-Metallic Ferromagnets", Physical Review Letters, Vol. 50, p. 2024, 1983.
4. Brown, P. J., Crangle, J., Kanomata, T., Matsumoto, M., Neumann, K. U., Ouladdiaf, B. and Ziebeck, K. R. A., "The Crystal Structure and Phase Transitions of the Magnetic Shape Memory Compound Ni2MnGa", Journal of Physics: Condensed Matter, Vol. 14, p. 10159, 2002.
5. Pons, J., Seguı, C., Chernenko, V. A., Cesari, E., Ochin, P. and Portier, R., "Transformation and Ageing Behaviour of Melt-Spun Ni–Mn–Ga Shape Memory Alloys", Materials Science and Engineering: A, Vol. 273, pp. 315-319, 1999.
6. Arras, E., Caliste, D., Deutsch, T., Lançon, F. and Pochet, P., "Phase Diagram, Structure, and Magnetic Properties of the Ge-Mn System: A First-Principles Study", Physical Review B, Vol. 83, p. 174103, 2011.
7. Dung, D. D., Yun, W. S., Hwang, Y., Feng, W., Hong, S. C. and Cho, S., "Electron Mediated/Enhanced Ferromagnetism in a Hydrogen-Annealed Mn: Ge Magnetic Semiconductor", Journal of Applied Physics, Vol. 109, p. 063912, 2011.
8. Le, T. G., Dau, M. T., Le Thanh, V., Nam, D. N. H., Petit, M., Michez, L. A. and Nguyen, M. A., "Growth Competition between Semiconducting Ge1−xMnx Nanocolumns and Metallic Mn5Ge3 Clusters", Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 3, p. 025007, 2012.
9. Kanazawa, N., Onose, Y., Arima, T., Okuyama, D., Ohoyama, K., Wakimoto, S. and Tokura, Y., "Large Topological Hall Effect in a Short-Period Helimagnet MnGe", Physical review letters, Vol. 106, p. 156603, 2011.
10. سبحانی، ر.، حکیمی، م.، خواجه امینیان، م. و کاملی، پ.، "مطالعه ویژگی های ساختاری و مغناطیسی نمونه های Mn3Ge ساخته شده به روش آلیاژسازی مکانیکی و بازپخت" دوازدهمین کنفرانس فیزیک ماده چگال ایران، دانشگاه صنعتی اصفهان، ص 275، 1393.
11. Winterlik, J., Balke, B., Fecher, G. H., Felser, C., Alves, M. C., Bernardi, F. and Morais, J., "Structural, Electronic, and Magnetic Properties of Tetragonal Mn3−xGa: Experiments and First-Principles Calculations", Physical Review B, Vol. 77,
p. 054406, 2008.
12. Balke, B., Fecher, G. H., Winterlik, J. and Felser, C., "Mn3Ga, a Compensated Ferrimagnet with High Curie Temperature and Low Magnetic Moment for Spin Torque Transfer Applications", Applied physics letters, Vol. 90, p. 2504, 2007. ‏
13. Guittoum, A., Layadi, A., Bourzami, A., Tafat, H., Souami, N., Boutarfaia, S. and Lacour, D., "X-ray Diffraction, Microstructure, Mössbauer and Magnetization Studies of Nanostructured Fe50Ni50 Alloy Prepared by Mechanical Alloying", Journal of Magnetism and Magnetic Materials, Vol. 320,
pp. 1385-1392, 2008.
14. Eckert, J., Holzer, J. C., Krill iII, C. E. and Johnson, W. L., "Mechanically Driven Alloying and Grain Size Changes in Nanocrystalline Fe‐Cu Powders", Journal of applied physics, Vol. 73, pp. 2794-2802, 1993.
15. Yamada, N., Funahashi, S., Izumi, F., Ikegame, M. and Ohoyama, T., "Magnetic Structure of Intermetallic Compound Κ-Mn5ge2", Journal of the Physical Society of Japan, Vol. 56, pp. 4107-4112, 1987.
16. Oleszak, D. and Shingu, P. H., "Mechanical Alloying in the Fe-Al System", Materials Science and Engineering: A, 181, pp. 1217-1221, 1994.
17. Lawson, A. C., Larson, A. C., Aronson, M. C., Johnson, S., Fisk, Z., Canfield, P. C. and Von Dreele, R. B., "Magnetic and Crystallographic Order in α‐Manganese", Journal of Applied Physics,
Vol. 76, pp. 7049-7051, 1994.
18. Eckerlin, P. and Kandler, H., "References for In Structure Data of Elements and Intermetallic Phases", Springer Berlin Heidelberg, pp. 31-40, 1971.
19. Ohba, T., Watanabe, N. and Komura, Y., "Temperature Dependence of the Lattice Constants and the Structure of Mn11Ge8 at 295 and 116 K", Acta Crystallographica Section B: Structural Science, Vol. 40, pp. 351-354, 1984.
20. Villars, P., Calvert, L. D. and Pearson, W. B., "Pearson's Handbook of Crystallographic Data for Intermetallic Phases", Volumes 1, 2, 3, American Society for Metals, pp. 3258, 1985.
21. Yamada, N., Maeda, K., Usami, Y. and Ohoyama, T., "Magnetic Properties of Intermetallic Compound Mn11Ge8", Journal of the Physical Society of Japan, Vol. 55, pp. 3721-3724, 1986.
22. Forsyth, J. B. and Brown, P. J., "The Spatial Distribution of Magnetisation Density in Mn5Ge3", Journal of Physics: Condensed Matter, Vol. 2,
p. 2713, 1990.
23. Yamada, N., "Atomic Magnetic Moment and Exchange Interaction between Mn Atoms in Intermetallic Compounds in Mn-Ge System", Journal of the Physical Society of Japan, Vol. 59, pp. 273-288, 1990.
24. Kurt H., Rode K., Venkatesan M., Stamenov P., and Coey J. M. D., "High Spin Polarization in Epitaxial Films of Ferrimagnetic Mn3Ga", Physical Review B, Vol. 83, p. 020405(R), 2011.
25. Matsui T., Shigematsu M., Mino S., Tsuda H., Mabuchi H., Morii K., "Formation of Unknown Magnetic Phase by Solid State Reaction of Thin Multilayered Films of 75 at % Mn-25 at %Ge", Journal of Magnetism and Magnetic Materials, Vol. 192, pp. 247-252, 1999.

تحت نظارت وف ایرانی