تولید فوم کامپوزیتی زمینه آلومینیومی AA356/SiCp به‌روش فوم‌سازی درجا در مذاب با عامل فوم‌ساز CaCO3 و بررسی خواص فشاری آن

نویسندگان

1 1- گروه پژوهشی مواد و مؤسسه آموزش عالی علمی کاربردی جهاددانشگاهی خراسان رضوی، مشهد

2 2- گروه مهندسی متالورژی و مواد، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 3- گروه مهندسی متالورژی، دانشکده مهندسی، دانشگاه شیراز

چکیده

در این پژوهش فوم­ های آلومینیومی AA356 با مقادیر مختلف از ذرات سیلیسیم کاربید (SiC) به ‌عنوان عامل تقویت­ کننده و پایدارساز و پودر کلسیم کربنات (CaCO3) به‌عنوان عامل فوم­ ساز با استفاده از روش فوم­ سازی مستقیم مذاب تولید شد. چگالی محصولات فومی بین 38/0 تا 68/0 گرم بر سانتی‌متر مکعب اندازه‌گیری شد. پس از آن ریزساختار و خواص فشاری فوم­ های کامپوزیتی AA356/SiCp < /sub> تولید شده بررسی شد. ارتباط بین تنش مسطح، چگالی، درصد وزنی CaCO3 و کسر حجمی ذرات SiC با قطر متوسط ثابت نیز مورد ارزیابی قرار گرفت. مشخص شد که منحنی تنش-کرنش فشاری محصولات یکنواخت نیست و ظاهری دندان ه­ای دارد. از سوی دیگر نشان داده شد که در یک چگالی ثابت، تنش مسـطح با افزایش محتـوای ذرات SiC و کاهـش مقدار پودر CaCO3 مصرفی، افزایش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of AA356/SiCp Aluminum Composite Foam via In-Situ Foaming Route of Melt using CaCO3 Foaming Agent and an Investigation of its Compressive Properties

نویسندگان [English]

  • M. Golestanipour 1
  • A. Babakhani 2
  • S.M. Zebarjad 3
1
2
3
چکیده [English]

In this study, aluminium composite foams reinforced by different volume fractions of SiC particles as reinforcement and stabilizing agent were fabricated with the direct foaming route of melt using different contents of CaCO3 as foaming agent. The density of produced foams were measured to be from 0.38 to 0.68 g/cm3. The microstructural features and compressive properties of the AA356/SiCp < /sub> composite foams were investigated. The relation between plateau stress, density and, weight percentage of CaCO3 and SiCp < /sub> volume fraction with a given particle size was also investigated. The results showed that compressive stress-strain curves of the products were not smooth and exhibit some serrations. Also, it was shown that in the same density of composite foams, the plateau stress of the composite foams increases with increasing volume fraction of SiC particles and decreasing weight percentage of CaCO3.

کلیدواژه‌ها [English]

  • Composite foams
  • AA356 aluminium alloy
  • SiC particles
  • calcium carbonate
  • Compressive properties
1. Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N.G., “Metal Foams-A Design Guide”, Butterworth-Heinemann, London, 2000.
2. Banhart, J., “Manufacture, Characterization and Application of Cellular Metals and Metallic Foams”, Progress in Material Science, Vol. 46, pp. 559-632, 2001.
3. Degischer, H.P., and Kriszt, B., “Handbook of cellular metals”, Weinheim, Wiley-VCH, 2002.
4. Nakamura, T., Gnyloskurenko, S., Sakamoto, K., Byakova, A.V., and Ishikawa, R., “Development of New Foaming Agent for Metal Foam”, Materials Transactions, Vol. 43, pp. 1191-1196, 2002.
5. Fusheng, H., Jianning, W., Hefa, C., and Junchang, G., “Effects of Process Parameters and Alloy Compositions on the Pore Structure of Foamed Aluminum”, Journal of Materials Processing Technology, Vol. 138, pp. 505-507, 2003.
6. Song, Z., and Nutt, S.R., “Rheology of Foaming Aluminum Melts”, Materials Science and Engineering A, Vol. 458, pp. 108-115, 2007.
7. Da-wu, L., Jie, L., Tao, L., Ting, S., Xiao-ming, Z., and Guang-chun, Y., “Preparation and Characterization of Aluminum Foams with ZrH2 as Foaming Agent”, Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 346-352, 2011.
8. Papadopoulos, D.P., Omar, H., Stergioudi, F., Tsipas, S.A., and Michailidis, N., “The Use of Dolomite as Foaming Agent and its Effect on the Microstructure of Aluminium Metal Foams-Comparison to Titanium Hydride”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 382, pp. 118-123, 2011.
9. Lázaro, J., Solórzano, E., and Rodríguez-Pérez, M.A., “Alternative Carbonates to Produce Aluminium Foams via Melt Route”, Procedia Materials Science, Vol. 4, pp. 275-280, 2014.
10. Byakova, A., Kartuzov, I., Nakamura, T., and Gnyloskurenko, S., “The Role of Foaming Agent and Processing Route in Mechanical Performance of Fabricated Aluminum Foams”, Procedia Materials Science, Vol. 4, pp. 109-114, 2014.
11. Gergely, V., Curran, D.C., and Clyne, T.W., “The FOAMCARP Process: Foaming of Aluminium MMCs by the Chalk-Aluminium Reaction in Precursors”, Composites Science and Technology, Vol. 63, pp. 2301-2310, 2003.
12. Golestanipour, M., Amini Mashhadi, H., Abravi, M.S., Malekjafarian, M., and Sadeghian, M.H., “Manufacturing of Al/SiCp Composite Foams Using Calcium Carbonate as Foaming Agent”, Materials Science and Technology, Vol. 27, pp. 923-927, 2011.
13. Gui, M.C., Wang, D.B., Wu, J.J., Yuan, G.J., and Li, C.G., “Deformation and Damping Behaviors of Foamed Al-Si-SiCp Composite”, Materials Science & Engineering A, Vol. 286, pp. 282-288, 2000.
14. Gibson, L.J., and Ashby, M.F., “Cellular Solids: Structures and Properties”, 2nd edition, Cambridge: Cambridge University Press, 1997.
15. Ramamury, U., and Kumaran, M.C., “Mechanical Property Extraction through Conical Indentation of a Closed-Cell Aluminum Foam”, Acta Materialia,
Vol. 52, pp. 181-189, 2004.
16. Luo, Y., Yu, S., Li, W., Liu, J., and Wei, M., “Compressive Behavior of SiCp/AlSi9Mg Composite Foams”, Journal of Alloys and Compounds,
Vol. 460, pp. 294-298, 2008.
17. Yu, S., Luo, Y., and Liu, J., “Effects of Strain Rate and SiC Particle on the Compressive Property of SiCp/AlSi9Mg Composite Foams”, Materials Science and Engineering A, Vol. 487, pp. 394-399, 2008.
18. Esmaeelzadeh, S., Simchi, A., and Lehmhus, D., “Effect of Ceramic Particle Addition on the Foaming Behavior, Cell Structure and Mechanical Properties of P/M AlSi7 Foam”, Materials Science and Engineering A,Vol. 424, pp. 290-299, 2006.
19. Xia, X., Zhang, Z., Wang, J., Zhang, X., Zhao, W., Liao, B., and Hur, B., “Compressive Characteristics of Closed-Cell Aluminum Foams after Immersion in Simulated Seawater”, Materials and Design, Vol. 67, pp. 330-336, 2015.
20. Crupi, V., Kara, E., Epasto, G., Guglielmino, E., and Aykul, H., “Prediction Model for the Impact Response of Glass Fiber Reinforced Aluminium Foam Sandwiches”, International Journal of Impact Engineering, Vol. 77, pp. 97-107, 2015.

تحت نظارت وف ایرانی