بررسی مکانیزم واکنش، ساختار و خواص مکانیکی کامپوزیت درجای تولید شده در سیستم Al-V2O5-NiO

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

چکیده

در این پژوهش تولید کامپوزیت درجا به روش سنتز احتراقی آلومینوترمیک در سیستم Al-V2O5-NiO مورد مطالعه قرار گرفت. بدین منظور مخلوط پودرهای Al، V2O5 و NiO با نسبت استوکیومتری به‌ترتیب با درصد مولی 1:1:11 به‌مدت یک ساعت آسیاب‌کاری و سپس تحت تراکم قرار گرفتند. برای بررسی دماهای وقوع تحولات فازی از تجزیه حرارتی افتراقی استفاده شد. نمونه‌های خام با توجه به دمای پیک واکنش‌ها در تجزیه حرارتی افتراقی، تحت عملیات حرارتی قرار گرفتند. بررسی الگوهای پراش پرتو ایکس تشکیل فازهایی همانند فاز Al3V و Al3Ni2 در دماهای مختلف زینترینگ را نشان می‌دهد. بررسی‌های ریزساختاری و فازی نشان داد که در طی زینترینگ تا قبل از دمای 700 درجه سانتی‌گراد، فاز Al3V تشکیل نمی‌شود و در دمای 880 درجه سانتی‌گراد فاز Al3Ni2 تشکیل و بعد از درجه حرارت 950 درجه سانتی‌گراد نیز به فاز Al4Ni3 تبدیل می‌شود. به‌علاوه بعد از درجه حرارت 950 درجه سانتی‌گراد فاز Al3V به فاز Al23V4 تبدیل می‌شود. بررسی سختی و چگالی نیز نشان داد که این دو متغیر با افزایش درصد تقویت کننده‌ها، افزایش می‌یابند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Reaction Mechanism, Structure and Mechanical Properties of the In-situ Composites Fabricated in Al-V2O5-NiO System

نویسندگان [English]

  • F. Mirarabshahi
  • M. Kalantar
  • A. Mashreghi
  • M. Kalantar
  • M. Mosalaei
چکیده [English]

In this study, fabrication of an in-situ composite through aluminothermic combustion synthesis in An Al–V2O5-NiO system was investigated. Therefore, Al, V2O5 and NiO powders with stoichiometric ratio of 11:1:1, respectively, were milled for an  hour and finally the mixtures were compressed. In order to investigate the temperatures of phase transformations, Differential Thermal Analysis (DTA) was utilized. Heat treatment was applied on the raw samples according to their peak temperatures treated in DTA. X Ray Diffraction (XRD) analysis for the samples shows formation of phases such as Al3V and Al3Ni2 at different sintering temperatures. Microstructure and phase analysis showed that during sintering of this sample, Al3V phase was not formed below 700 °C, at 880 °C Al3Ni2 it was formed and after 950 °C, it was transformed to Al4Ni3 phase. In addition, after 950°C, Al3V transformed into Al23V4 phase. Analysis of samples density and hardness showed that, due to increase of volume fraction percentages of reinforcing phase, these two parameters increase as well.

کلیدواژه‌ها [English]

  • In-situ composite
  • Alumiothermic
  • Intermetallic and ceramic compounds
  • Combustion synthesis
1. Sabrahmanyam, J., and Vijayakumar, M., “Self-Propagating High-Temperature Synthesis”, Journal of Material Science, Vol. 27(23), pp. 6249-6273, 1992.
2. Schaffer, G.B., and Hall, B.J., “The Influence of The Atmosphere on the Sintering of Aluminum”, Metallurgical and Materials Transactions; Vol. 33 (10)A, pp. 3279, 2002.
3. Bin, Y., Guoxiang Ch., and Jishan Z., “Effect of Ti/C Additions on the Formation of Al3Ti Of In Situ TiC/Al Composite”, Materials and Design, Vol. 22, pp. 645-650, 2001.
4. Zhao, D., Liu, P., Bian, X., and Liu, X., “Microstructure and Mechanical Properties of In Situ Synthesized (TiB2+Al2O3)/Al–Cu Composites”, Journal Of Materials Processing Technology, Vol. 189, pp. 237–241, 2007.
5. Zhou, Y., Zhenyang, Y., Zhao, N., and Chunsheng, Sh., “Microstructure and Properties of In Situ Generated MgAl2O4 Spinel Whisker Reinforced Aluminum Matrix Composites”, Materials and Design, Vol. 46, pp. 724-730, 2013.
6. Ruixiao, Zh., Han, Y., and Tong, L., “Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles” , Materials and Design, Vol. 53 , pp. 512–518, 2014.
7. Zhang, L., Gan, G.S., and Yang, B., “Microstructure and Property Measurements on In Situ TiB2/70Si–Al Composite for Electronic Packaging Applications”, Materials and Design, Vol. 36, pp. 177-181, 2012.
8. Lekatou, A., Karantzalis, A.E., Evangelou, A., and Gousia, V., “Aluminum Reinforced by WC and TiC Nanoparticles (Ex-Situ) and Aluminide Particles (In-Situ): Microstructure, Wear and Corrosion Behavior”, Materials and Design, Vol. 65,
pp. 1121-1135, 2014.
9. Chen, Z.C., Takeda, T., and Ikeda, K., “Microstructural Evolution of Reactive-Sintered Aluminum Matrix Composites”, Composites Science and Technology, Vol. 68, pp. 2245-2253, 2008.
10. Woo, K., Kim, J., and Kwon, E.P., “Fabrication of Al Matrix Composite Reinforced with Submicrometer-Sized Al2O3 Particles Formed by Combustion Reaction between HEMM Al and V2O5 Composite Particles during Sintering”, Mettalurgy Material, Vol. 16(2), pp. 213-218, 2010.
11. Taherzadeh, R.T., Mousavian, Sharafi, S., and Shariat, M.H, “Microwave-Assisted Combustion Synthesis in A Mechanically Activated Al–TiO2–H3BO3 System”, International Journal of Refractory Metals and Hard Materials, Vol. 29, pp. 281-288, 2011.
12. Rosenband, V., Torkar, M., and Gany, A., “Self-Propagating High-Temperature Synthesis of Complex Nitrides of Intermetallics”, Intermetallics, Vol. 14, pp. 551-559, 2006.
13. Wang, L., and Arsenault, R.J, “Interfaces in XD Processed TiB2/NiAl Composites”, Metallurgical Transactions A, Vol. 22(12), pp. 3013-3018, 1991.
14. Samuel, J., Dilip, J., and Reddyb, B.S.B., “Mechanical Thermal Synthesis of In Situ Al Based Hybrid Nanocomposites in Al–Ni–Ti–O System”, Journal of Alloys and Compounds, Vol. 490,
pp. 103-109, 2010.
15. Ai, T.T., “Microstructures and Mechanical Properties of In-Situ Al2O3/TiAl Composites by Exothermic Dispersion Method”, Acta Metallurgica Sinica(English Letters), Vol. 21, Number 6,
pp. 437-443, Dec. 2008.
16. Ivanov, E., Grigorieva, T., Golubkova, G., and Boldyrev, V., “Synthesis of Nickel Aluminides by Mechanical Alloying”, Materials Letter, Vol. 7, Issue 51, 1988.
17. Anvari, S.Z., Karimzadeh, F., and Enayati, M.H., “Synthesis and Characterization of NiAl–Al2O3 Nanocomposite Powder by Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 477,
pp. 178-181, 2009.
18. Yazdian, N., Karimzadeh, F., and Enayati, M.H., “In-Situ Fabrication of Al3V/Al2O3 Nanocomposite through Mechanochemical Synthesis and Evaluation of its Mechanism”, Advanced Powder Technology, Vol. 24, pp. 106-112, 2013.
19. Omran, A., “Fabrication and Characterization of Al-Based in Situ Composites Reinforced by Al3V Intermetallic Compounds”, Journal of Scientific Research, Vol. 2(2), pp. 26-34, 2014.
20. Delgado, J., “Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products”, ASTM C373-88, 2006.
22. Bahrami Motlagh, E., Nasiri, H., Vahdati Khaki, J., and Haddad Sabzevar, M., “Formation of Metal Matrix Composite Reinforced with Nano Sized Al2O3+Ni–Al Intermetallics during Coating of Al Substrate via Combustion Synthesis”, Surface & Coatings Technology, Vol. 205, pp. 5515-5520, 2011.
23. Zhu, H., Ai, Y., and Li, J., “In Situ Fabrication of Α-Al2O3 and Ni2Al3 Reinforced Aluminum Matrix Composites in an Al–Ni2O3 System”, Advanced Powder Technology, Vol. 22, pp. 629-633, 2011.
24. Zhu, H., Min, J., Ai, Y., Chu, D., and Wang, H., “The Reaction Mechanism and Mechanical Properties of The Composites Fabricated in an Al-Zro2-C System”, Materials Science and Engineering A, Vol. 527, pp. 6178-6183, 2010.
25. Baker, H., ASM Metals Handbook, “Alloy Phase Diagrams”, Vol. 3, pp. 282 and 1262.
26. Hossein-Zadeh, M., Mirzaee, O., and Saidi, P., “Structural and Mechanical Characterization of Al-Based Composite Reinforced with Heat Treated Al2O3 Particles”, Materials and Design, Vol. 54,
pp. 245-250, 2014.
27. Yang, H., and Mccormic, P.G., “Mechanochemical Reduction of V2O5”, Journal of Solid State Chemistry, Vol. 110, pp. 136-141, 1994.
28. Zhu, H.X., and Abbaschian, R., “In-Situ Processing of NiAl–Alumina Composites by Thermite Reaction”, Materials Science and Engineering A, Vol. 282, pp. 1-7, 2000.

ارتقاء امنیت وب با وف ایرانی