بهینه‌سازی خواص مکانیکی سطحی و مشخصه‌یابی نانوکامپوزیت AZ31B/CNT به‌روش فرایند اصطکاکی اغتشاشی (FSP) با استفاده از روش طراحی آزمایشات روش سطح پاسخ (RSM)

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

در این تحقیق به بهینه‌سازی کامپوزیت‌سازی سطحی آلیاژ منیزیم AZ31B با نانولوله‌های کربنی به کمک روش فرایند اصطکاکی- اغتشاشی پرداخته شد. بدین منظور پارامترهای مؤثر در فرایند شامل سرعت پیشروی، سرعت چرخش، درصد وزنی نانولوله‌های کربنی و تعداد پاس جوشکاری با روش طراحی آزمایش پاسخ سطح بررسی شد. جهت مشخصه‌یابی نمونه‌ها از آزمون‌های میکروسختی سنجی، کشش، پانچ برشی و سایش خشک پین برروی دیسک استفاده شد. نتایج مدل‌سازی برروی دو پاسخ سختی و کاهش وزن ناحیه جوش نشان می‌دهد که در سرعت پیشروی 24 میلی‌متر بر دقیقه، سرعت چرخش 660 دور بر دقیقه، چهار درصد وزنی نانولوله کربنی و سه پاس جوشکاری، شرایط بهینه قابل دستیابی است. همچنین شکست نگاری سطوح کشش و برش حکایت از توزیع همگن نانولوله‌های کربنی در زمینه و افزایش خواص کششی و برشی داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Surface Mechanical Properties and Characterization of AZ31B/CNT Nano-composite through Friction Stir Processing (FSP) using Response Surface Methodology (RSM) Design of Experiment

نویسندگان [English]

  • M. Soltani
  • B. Niroumand
  • B. Niroumand
  • M. Shamanian
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In this paper, the optimization of the surface composite of Mg AZ31B-carbon nanotub(CNT) via friction stir processing was investigated. Then, the most effective process parameters such as transverse speed, rotational speed, CNT weight percent and welding passes were studied by Response Surface Methodology (RSM) design of experiment. The specimens were also characterized by micro-hardness, tensile, shear punch and pin on disk dry sliding wear tests. The optimization results of hardness and weight reduction responses showed that the best conditions would be achievable with a transverse speed of 24 mm/min, rotational speed of 660 rpm, 4wt.% CNT and 3 welding passes. Moreover, fracture analysis of the surfaces proved a uniform distribution of CNTs in the matrix resulted in higher tensile and shear strength.
 

کلیدواژه‌ها [English]

  • Magnesium
  • Carbon Nano Tubes
  • Friction-Stir Processing
  • Nano-composites
  • Design of Experiment
1. Zhang, D. T., Xiong, F., Zhang W. W., Qui, C., and Zhang, W., “Superplasticity of AZ31 Magnesium Alloy Prepared by Friction Stir Processing”, Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 1911-1916, 2011.
2. Gray, J. E., and Luan, B., “Protective Coatings on Magnesium and Its Alloys-a Critical Review”, Journal of Alloys and Compounds, Vol. 336, pp. 88-113, 2002.
3. Lim, D. K., Shibayanagi, T., and Gerlich, A. P., “Synthesis of Multi-Walled CNT Reinforced Aluminium Alloy Composite via Friction Stir Processing”, Materials Science and Engineering A, Vol. 507, pp. 194-199, 2009.
4. Woo, W., Choo, H., Brown, D. W., Liaw, P. K., and Feng, Z., “Texture Variation and its Influence on the Tensile Behavior of a Friction-Stir Processed Magnesium Alloy”, Scripta Materialia, Vol. 54, pp. 1859-1864, 2006.
5. Faraji, G., Dastani, O., and Akbari Mousavi, S. A. A., “Effect of Process Parameters on Microstructure and Micro-Hardness of AZ91/Al2O3 Surface Composite Produced by FSP”, Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1583-1590, 2011.
6. Asadi, P., Faraji, G., and Besharati, M. K., “Producing of AZ91/SiC Composite by Friction Stir Processing (FSP)”, International Journal of Advanced Manufacturing Technology, Vol. 51, pp. 247-260, 2010.
7. Lu, D., Jiang, Y., and Zhou, R., “Wear Performance of Nano-Al2O3 Particles and CNTs Reinforced Magnesium Matrix Composites by Friction Stir Processing”, Wear, Vol. 305, pp. 286-290, 2013.
8. Izadi, H. and Gerlich, A. P., “Distribution and Stability of Carbon Nanotubes During Multi-Pass Friction Stir Processing of Carbon Nanotube/Aluminum Composites”, Carbon, Vol. 50, pp. 4744-4749, 2012.
9. Johannes, L. B., Yowell, L. L., Sosa, E., Arepalli, S., and Mishra, R. S., “Survivability of Single-Walled Carbon Nanotubes During Friction Stir Processing”, Nanotechnology, Vol. 17, pp. 3081-3084, 2006.
10. Liu, Q., Ke, L., Liu, F., Huang, C., and Xing, Li., “Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing”, Materials and Design, Vol. 45, pp. 343-348, 2013.
11. Gonzalez, A., “Two Level Factorial Experimental Designs Based on Multiple Linear Regression Models: a Tutorial Digest Illustrated by Case Studies”, Analytica Chimica Acta, Vol. 360, pp. 227-241, 1998.
12. Anderson, M., and Whitecomb, P., DOE Simplified: Practical Tools for Effective Experimentation, 1 ed., pp. 1-196, Oregan: Productivity Inc., 2000.
13. Housh, S., and Mikucki, B., Properties and Selection: Nonferrous Alloys and Special-Purpose Materials: Selection and Application of Magnesium and Magnesium Alloys, ASM Handbook, Vol. 2, United States of America: ASM International, 1990.
14. Becherer, B. A., and Witheford, T. J., Heat treating: Heat Treating of Ultrahigh-Strength Steels, ASM Handbook, Vol. 4, United States of America: ASM International, 1991.
15. Azizieh, M., Kokabi, A. H., and Abachi, A., “Effect of Rotational Speed and Probe Profile on Microstructure and Hardnessof AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing”, Materials and Design, Vol. 32, pp. 2034-2041, 2011.
16. Yu, Z., Zhang, W., Choo, H., and Feng, Z., “Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool”, Metallurgical and Materials Transactions A, Vol. 43, pp. 724-737, 2011.
17. Alavi Nia, A., Omidvar, H., and Nourbakhsh, S. H., “Investigation of the Effects of Thread Pitch and Water Cooling Action on the Mechanical Strength and Microstructure of Friction Stir Processed AZ31”, Materials and Design, Vol. 52, pp. 615-620, 2013.
18. Chang, C. I., Du, X. H., and Huang, J. C., “Producing Nanograined Microstructure in Mg-Al-Zn Alloy by Two-Step Friction Stir Processing”, Scripta Materialia, Vol. 59, No. 3, pp. 356-359, 2008.
19. Chang, C. I., Du, X. H., and Huang, J. C., “Achieving Ultrafine Grain Size in Mg-Al-Zn Alloy by Friction Stir Processing”, Scripta Materialia, Vol. 57, No. 3, pp. 209-212, 2007.
20. Kehoe, S., Ardhaoui, M., and Stokes, J., “Design of Experiments Study of Hydroxyapatite Synthesis for Orthopaedic Application using Fractional Factorial Design”, Materials Engineering and Performance, Vol. 20, pp. 1423-1437, 2010.
21. Ghadiri, M., Vatanara, A., Doroud, D., and Najafabadi, A., “Paromomycin Loaded Solid Lipid Nanoparticles Characterization of Production Parameters”, Biotechnology and Bioprocess Engineering, Vol. 92, pp. 2580-2585, 2011.
22. DX7 Help, Design-Expert Software, Version 7.1, User's Guide, Technical Manual, Stat-Ease Inc., Minneapolis, 2007.
23. Xin, R., Liu, D., Li, B., Sun, L., Zhou, Z., and Liu, Q., “Mechanisms of Fracture and Inhomogeneous Deformation on Transverse Tensile Test of Friction-Stir-Processed AZ31Mg Alloy”, Materials Science and Engineering A, Vol. 565, pp. 333-341, 2013.
24. Guduru, R. K., Darling, K. A., Kishore, R., Scattergood, R. O., Koch, C. C., and Murty, K. L., “Evaluation of Mechanical Properties using Shear-Punch Testing”, Matererials Science and Engineering A, Vol. 395, No. 1-2, pp. 307-314, 2005.
25. Karthik, V., Visweswaran, P., Vijayraghavan, A., Kasiviswanathan, K. V., and Raj, B., “Tensile-Shear Correlations Obtained from Shear Punch Test Technique using a Modified Experimental Approach”, Journal of Nuclear Materials, Vol. 393, No. 3, pp. 425-432, 2009.
26. Vander Voort, G. F., Fractography, ASM Handbook Vol. 12, United States of America: ASM International, 1987.
27. Akhbarizadeh, A., Golozar, M. A., and Shafeie, A., “Effects of Austenizing Time on Wear Behavior of D6 Tool Steel after Deep Cryogenic Treatment”, Journal of Iron and Steel Research, Vol. 16, No. 6, pp. 29-32, 2009.
28. Akhbarizadeh, A., Javadpour, S., and Amini, K., “Investigating the Effect of Electric Current Flow on the Wear Behavior of 1.2080 Tool Steel During the Deep Cryogenic Heat Treatment”, Materials and Design, Vol. 45, pp. 103-109, 2013.
29. ASM Vol. 18 - Friction, Lubrication, and Wear Technology, ASM International, The USA, 1992.
30. Chang, L., Zhang, Z., Breidt, C., and Friedrich, K., “Tribological Properties of Epoxy Nanocomposites I. Enhancement of the Wear Resistance by Nano-TiO2 Particles”, Wear, Vol. 258, pp. 141-148, 2005.

تحت نظارت وف ایرانی