سنتز و مشخصه‌یابی پوشش نانوکامپوزیت FeAl/Al2O3 بر زیرلایه فولادی تولید شده به‌روش آسیا‌کاری گلوله‌ای پرانرژی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

در این پژوهش پوشش کامپوزیتی نانوساختار FeAl/Al2O3 به‌روش آسیا‌کاری مکانیکی از طریق یک واکنش مکانوشیمیایی بر سطح زیرلایه فولاد کربنی پوشش داده شد. مواد اولیه مصرفی Fe، Al و Fe2O3 به میزان استوکیومتری به همراه زیرلایه و گلوله‌هایی به قطر چهار میلی‌متر در یک آسیای ارتعاشی پرانرژی تا 22 ساعت تحت آسیا‌کاری قرار گرفت. برخی از نمونه‌های آسیا شده به مدت زمان یک و سه ساعت در دمای773 کلوین آنیل شدند. آزمون‌های پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، ریزسختی سنج و زبری سنج جهت ارزیابی مکانیزم واکنش مکانوشیمیایی و همچنین مشخصه‌یابی پوشش مورد استفاده قرار گرفت. واکنش مکانوشیمیایی در حین عملیات آسیا‌کاری پس از 14 ساعت شروع و منجر به تشکیل جزئی نانوکامپوزیت FeAl/Al2O3 شد. افزایش زمان آسیا‌کاری تا 18 ساعت سبب افزایش مداوم ضخامت پوشش تا 80 میکرومتر گردید و ادامه فرایند آسیا‌کاری پس از آن موجب کندگی موضعی پوشش و ایجاد ترک در ساختار آن شد. ریزسختی پوشش 18 ساعت آسیا شده معادل 1050 ویکرز تعیین شد. آنیل در دمای 773 کلوین به مدت سه ساعت موجب تکمیل واکنش و سنتز پوشش نانوکامپوزیتی FeAl/Al2O3 شد. نتایج نشان داد که عملیات آنیل سبب افزایش سختی پوشش به 1200 ویکرز و بهبود قابل ملاحظه چسبندگی پوشش شد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and Characterization of FeAl/Al2O3 Nanocomposite Coating on Carbon Steel Plate by High Energy Mechanical Alloying

نویسندگان [English]

  • M. Akbari
  • S. Sabooni
  • M. H. Enayati
  • F. Karimzadeh
چکیده [English]

In the present study, FeAl/Al2O3 nanocomposite coating was produced on the carbon steel plate using mechanical alloying (MA) technique via a mechanochemical reaction. Stoichiometric ratios of Fe, Al and Fe2O3 as well as a substrate were mixed and milled up to 22h in a vibrating high energy mill with a 4 mm ball. Samples prepared after 18h of MA were subjected to annealing at 773 K for 1-3 h. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and microhardness measurements were carried out to study mechanochemical reaction and coating formation characterization. The results showed that mechanochemical reactions were started after 10h of MA, which finally caused the slight formation of FeAl/Al2O3 nanocomposite. Increasing the milling time to 18 hours led to the continuous increase of the coating thickness up to 80 μm, while the coating layer fractured and began to peel by further milling. The microhardness of the coating after 18h milling was 1050 vickers. Annealing of the 18h milled powders at 773K for 3h led to the complete formation and synthesis of the FeAl/Al2O3 nanocomposite. The results showed that the annealing treatment had considerable effects on the hardness increase up to 1200 vickers as well as adhesion strength of the composite coating.
 

کلیدواژه‌ها [English]

  • Coating
  • nanocomposite
  • mechanical alloying
  • Iron Aluminide
1. Marder, A. R., “The Metallurgy of Zinc Coated Steel”, Progress in Materials Science, Vol. 45, pp. 191-271, 2000.
2. Kelesoglu, E., Mitterer, C., and Urgen, M., “Corrosion Characteristics of Plain Carbon Steel Coated with TiN and ZrN under High-Flux Ion Bombardment”, Surface and Coating Technology, Vol. 160, No. 1, pp. 82-86, 2002.
3. Stoloff, N. S., “Iron Aluminides: Present Status and Future Prospects”, Materials Science and Engineering A, Vol. 258, pp. 1-14, 1998.
4. Rafiei, M., Enayati, M. H., and Karimzadeh, F., “Mechanochemical Synthesis of (Fe,Ti)3Al-Al2O3 Nanocomposite”, Journal of Alloys and Compounds, Vol. 488, No. 1, pp. 144-147, 2009.
5. Aghili, S. E., Enayati, M. H., and Karimzadeh, F., “Synthesis of Nanocrystalline (Fe,Cr)3Al Powders by Mechanical Alloying”, Materials and Manufacturing Process, Vol. 27, No. 4, pp. 467-471, 2012.
6. Morris-Munoz, M. A., Dodge, A., and Morris, D. G., “Structure, Strength and Toughness of Nanocrystalline FeAl”, Nanostructured Materials, Vol. 11, No. 7, pp. 873-885, 1999.
7. Song, B., Dong, Sh., Liao, H., and Coddet, Ch., “Microstructure and Wear Resistance of FeAl/Al2O3 Intermetallic Composite Coating Prepared by Atmospheric Plasma Spraying”, Surface and Coating Technology, Vol. 268, pp. 24-29, 2015.
8. Guilemany, J. M., Cinca, N., Dosta, S., and Lima, C. R. C., “High-Temperature Oxidation of Fe40Al Coatings Obtained by HVOF Thermal Spray”, Intermetallics, Vol. 15, pp.1384-1394, 2007.
9. Yang, G. J., Wang, H. T., Li, C. J., and Li, C. X., “Effect of Annealing on the Microstructure and Erosion Performance of Cold-Sprayed FeAl Intermetallic Coating”, Surface and Coating Technology, Vol. 205, pp. 5502-5509, 2011.
10. Pouriamanesh, R., Vahdati-Khaki, J., and Mohammadi, Q., “Coating of Al Substrate by Metallic Ni through Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 488, pp. 430-436, 2009.
11. Romankov, S., Kaloshkin, S. D., Hayasaka, Y., Sagdoldina, Zh., Komarov, S.V., Hayashi, N., and Kasai, E., “Structural Evolution of the Ti-Al Coatings Produced by Mechanical Alloying Technique”, Journal of Alloys and Compounds, Vol. 483, pp. 386-388, 2009.
12. Romankov, S., Sha, W., Kaloshkin, S. D., and Kaevitser, K., “Fabrication of Ti-Al Coatings by Mechanical Alloying Method”, Surface and Coating Technology, Vol. 201, pp. 3235-3245, 2006.
13. Gupta, G., Monda, K., and Balasubramaniam, R., “In Situ Nanocrystalline Fe–Si Coating by Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 482, pp. 118-122, 2009.
14. Mohammadnezhad, M., Shamanian, M., Enayati, M. H., and Salehi, M., “Influence of Annealing Temperature on the Structure and Properties of the Nanograined NiAl Intermetallic Coatings Produced by using Mechanical Alloying”, Surface and Coating Technology, Vol. 217, pp. 64-69, 2013.
15. Mohammadnezhad, M., Shamanian, M., Enayati, M. H., Salehi, M., and Hoseynian, A., “Microstructures and Properties of NiAl–TiC Nanocomposite Coatings on Carbon Steel Surfaces Produced by Mechanical Alloying Technique”, Surface and Coating Technology, Vol. 238, pp. 180-187, 2014.
16. Wismogroho, A. S., Widayatno W. B., Suryadi, Zaini Thosin, K. A., Rochman, N. T., and Sueyoshi, H., “Iron Aluminide Coating on Al by Mechanical Alloying”, Surface Engineering, Vol. 27, No. 2, pp. 126-133, 2011.
17. Aryanto, D., Wismogroho, A. S., and Sudiro, T., “Structure Evolution of Fe-50%Al Coating Prepared by Mechanical Alloying”, Journal of Physics: Conference Series, Vol. 739, 012132, 2016.
18. Williamson, K., and Hall, W. H., “X-ray Line Broadening from Field Aluminum and Wolfram”, Acta Metallurgica, Vol. 1, pp. 22-31, 1953.
19. Suryanarayana, C., “Mechanical Alloying and Milling”, Progress in Materials Science, Vol. 46, pp. 1-184, 2001.
20. Wang, H. T., Li, Ch. J., Yang, G. J., and Li, Ch. X., “Effect of Heat Treatment on the Microstructure and Property of Cold-Sprayed Nanostructured FeAl/Al2O3 Intermetallic Composite Coating”, Vacuum, Vol. 83, pp. 146-152, 2008.

ارتقاء امنیت وب با وف بومی