رسوب‌دهی الکتریکی پوشش نیکل- مولیبدن بر فولاد زنگ‌نزن جهت استفاده به‌عنوان صفحات دوقطبی پیل سوختی پلیمری

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان

چکیده

صفحات دوقطبی فولاد زنگ‌نزن گزینه‌ای مناسب جهت به کارگیری در پیل سوختی پلیمری هستند، لیکن با توجه به دمای کاری 80 درجه سانتی‌گراد و محیط اسیدی و خورنده پیل سوختی پلیمری، برای افزایش پایداری و عمر مفید صفحات دوقطبی فلزی نیاز است تا سطح آنها با اعمال پوشش‌های هادی الکتریسیته و مقاوم به خوردگی محافظت شود. در این پژوهش، با اعمال پوشش‌هایNi–Mo  و Ni–Mo–P به روش رسوب‌دهی الکتریکی بر صفحه دوقطبی فولاد زنگ‌نزن L‌316، مقاومت به خوردگی بهبود و تشکیل لایه‌های اکسیدی روی سطح زیرلایه که عامل افزایش مقاومت الکتریکی است، کاهش یافته و عملکرد صفحات دوقطبی پیل بهبود یافت. بررسی‌های انجام شده شامل مطالعات ریزساختاری و فازی برای بررسی ترکیب پوشش‌های اعمالی، آزمون ولتامتری سیکلی جهت بررسی رفتار الکتروشیمیایی، آزمون ترشوندگی سطح پوشش‌ها جهت تعیین میزان آبگریزی، آزمون مقاومت تماسی برای تعیین مقاومت الکتریکی پوشش و آزمون پلاریزاسیون پیل سوختی جهت بررسی عملکرد صفحات دوقطبی در شرایط کاری در یک سلول پیل سوختی است. درنهایت نتایج نشان دادند که پوشش‌های فوق به‌طور مؤثری خوردگی و مقاومت الکتریکی تماسی فولاد زنگ‌نزن  را کاهش دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Electroplating of Ni-Mo Coating on Stainless Steel for Application in Proton Exchange Membrane Fuel Cell Bipolar Plate

نویسندگان [English]

  • H. Rashtchi
  • K. Raeissi
  • M. Shamanian
  • K. Raeissi
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Stainless steel bipolar plates are preferred choice for use in Proton Exchange Membrane Fuel Cells (PEMFCs). However, regarding the working temperature of 80 °C and corrosive and acidic environment of PEMFC, it is necessary to apply conductive protective coatings resistant to corrosion on metallic bipolar plate surfaces to enhance its chemical stability and performance. In the present study, by applying Ni-Mo and Ni-Mo-P alloy coatings via electroplating technique, corrosion resistance was improved, oxid layers formation on substrates which led to increased electrical conductivity of the surface was reduced and consequently bipolar plates fuction was enhanced. Evaluation tests included microstructural and phase characterizations for evaluating coating components; cyclic voltammetry test for electrochemical behavior investigations; wettability test for measuring hydrophobicity characterizations of the coatings surfaces; interfacial contact resistance measurements of the coatings for evaluating the composition of applied coatings; and polarization tests of fuel cells for evaluating bipolar plates function in working conditions. Finally, the results showed that the above-mentioned coatings considerably decreased the corrosion and electrical resistance of the stainless steel.

کلیدواژه‌ها [English]

  • PEM fuel cell
  • Bipolar plate
  • Ni-Mo coatings
  • Electroplating
  • wettability
  • Polarization test
1. Patrick, J. W., Handbook of Fuel Cells. Fundamentals Technology and Applications: Wolf Vielstich, Lamm, W., Hubert, A., and Gasteiger, A. (Eds.), John Wiley and Sons Ltd, Chichester, England, 2003, Vol. 83 (4-5), p. 623, 2004.
2. Hermann, A., Chaudhuri, T., and Spagnol, P., “Bipolar Plates for Pem Fuel Cells: A Review”, International Journal of Hydrogen Energy, Vol. 30, No. 12, pp. 1297-1302, 2005.
3. Davies, D. P., Adcock, P. L., Turpin, M., and Rowen, S. J., “Bipolar Plate Materials for Solid Polymer Fuel Cells”, Journal of Applied Electrochemistry, Vol. 30, No. 1, pp. 101-105, 2000.
4. U. S. Department of Energy. Multi-Year Research, Development and Demon-Stration Plan, 2012, Http://Www1.Eere.Energy.Gov/Hydrogenandfuelcells/Mypp/Pdfs/Fuel Cells.Pdf.
5. Kumagai, M., Myung, S.-T., Kuwata, S., Asaishi, R., and Yashiro, H., “Corrosion Behavior of Austenitic Stainless Steels as a Function of Ph for Use as Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells”, Electrochimica Acta, Vol. 53, No. 12, pp. 4205-4212, 2008.
6. Antunes, R. A., Oliveira, M. C. L., Ett, G., and Ett, V., “Corrosion of Metal Bipolar Plates for Pem Fuel Cells: A Review”, International Journal of Hydrogen Energy, Vol. 35, No. 8, pp. 3632-3647. 2010.
7. Feng, K., Wu, G., Li, Z., Cai, X., and Chu, P. K., “Corrosion Behavior of SS316l in Simulated and Accelerated Pemfc Environments”, International Journal of Hydrogen Energy, Vol. 36, No. 20, pp. 13032-13042, 2011.
8. Agneaux, A., Plouzennec, M. H., Antoni, L., and Granier, J., “Corrosion Behaviour of Stainless Steel Plates in Pemfc Working Conditions”, Fuel Cells, Vol. 6, No. 1, pp. 47-53, 2006.
9. Cheng, X., Shi, Z., Glass, N., Zhang, L., Zhang, J., Song, D., Liu, Z.-S., Wang, H., and Shen, J., “A Review of Pem Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation”, Journal of Power Sources, Vol. 165, No. 2, pp. 739-756, 2007.
10. Collier, A., Wang, H., Zi Yuan, X., Zhang, J., and Wilkinson, D. P., “Degradation of Polymer Electrolyte Membranes”, International Journal of Hydrogen Energy, Vol. 31, No. 13, pp. 1838-1854, 2006.
11. Kelly, M. J., Egger, B., Fafilek, G., Besenhard, J. O., Kronberger, H., and Nauer, G. E., “Conductivity of Polymer Electrolyte Membranes by Impedance Spectroscopy with Microelectrodes”, Solid State Ionics, Vol. 176, No. 25-28, pp. 2111-2114, 2005.
12. Kelly, M. J., Fafilek, G., Besenhard, J. O., Kronberger, H., and Nauer, G. E., “Contaminant Absorption and Conductivity in Polymer Electrolyte Membranes”, Journal of Power Sources, Vol. 145, No. 2, pp. 249-252, 2005.
13. Engström, A., “Determination of Acceptable Contaminant Levels for Pem Fuel Cell Stacks and Poisoning Mitigation Strategies”, Ph.D Thesis. Department of Applied Physics. Vol. Master Degree Program Applied Physics: Chalmers University of Technology, Gothenburg, Sweden. 2014.
14. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., “Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation”, Chemical Reviews, Vol. 107, No. 10, pp. 3904-3951. 2007.
15. de Oliveira, M. C. L., Ett, G., and Antunes, R. A., “Materials Selection for Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells Using the Ashby Approach”, Journal of Power Sources, Vol. 206, pp. 3-13, 2012.
16. Fukutsuka, T., Yamaguchi, T., Miyano, S. -I., Matsuo, Y., Sugie, Y., and Ogumi, Z., “Carbon-Coated Stainless Steel as Pefc Bipolar Plate Material”, Journal of Power Sources, Vol. 174, No. 1, pp. 199-205, 2007.
17. Ren, Y. J., and Zeng, C. L., “Effect of Conducting Composite Polypyrrole/Polyaniline Coatings on the Corrosion Resistance of Type 304 Stainless Steel for Bipolar Plates of Proton-Exchange Membrane Fuel Cells”, Journal of Power Sources, Vol. 182, No. 2, pp. 524-530, 2008.
18. Wind, J., Späh, R., Kaiser, W., and Böhm, G., “Metallic Bipolar Plates for Pem Fuel Cells”, Journal of Power Sources, Vol. 105, No. 2, pp. 256-260, 2002.
19. Erb, U., El-Sherik, A. M., Palumbo, G., and Aust, K. T., “Synthesis, Structure and Properties of Electroplated Nanocrystalline Materials”, Nanostructured Materials, Vol. 2, No. 4, pp. 383-390, 1993.
20. Brenner, A,. 34 - Electrodeposition of Alloys Containing Molybdenum and Nickel, Cobalt, or Iron, in Electrodeposition of Alloys, Academic Press, pp. 413-456, 1963.
21. Chassaing, E., Portail, N., Levy, A.-f., and Wang, G., “Characterisation of Electrodeposited Nanocrystalline Ni-Mo Alloys”, Journal of Applied Electrochemistry, Vol. 34, No. 11, pp. 1085-1091, 2004.
22. Brenner, A., “Electrodeposition of Alloys”, Academic Press. 1963.
23. Chassaing, E., Roumegas, M. P., and Trichet, M. F., “Electrodeposition of Ni-Mo Alloys with Pulse Reverse Potentials”, Journal of Applied Electrochemistry, Vol. 25, No. 7, pp. 667-670, 1995.
24. Podlaha, E. J., and Landolt, D., “Induced Codeposition. 2: A Mathematical Model Describing the Electrodeposition of Ni-Mo Alloys”, Journal of the Electrochemical Society, Vol. 143, No. 3, pp. 893-898, 1996.
25. Tereszko, B., Riesenkampf, A., and Quang, K. V., “Investigation of the Kinetics of Ni-Mo Codeposition with a Rotating Disc Cathode”, Surface and Coatings Technology, Vol. 12, No. 3, pp. 301-307, 1981.
26. Donten, M., Cesiulis, H., and Stojek, Z., “Electrodeposition of Amorphous/Nanocrystalline and Polycrystalline Ni-Mo Alloys from Pyrophosphate Baths”, Electrochimica Acta, Vol. 50, No. 6, pp. 1405-1412, 2005.
27. Beltowska-Lehman, E., and Indyka, P., “Kinetics of Ni-Mo Electrodeposition from Ni-Rich Citrate Baths”, Thin Solid Films, Vol. 520, No. 6, pp. 2046-2051, 2012.
28. Chassaing, E., Vu Quang, K., and Wiart, R., “Mechanism of Nickel-Molybdenum Alloy Electrodeposition in Citrate Electrolytes”, Journal of Applied Electrochemistry, Vol. 19, No. 6, pp. 839-844, 1989.
29. Wang, L., and Sun, J., “Molybdenum Modified Aisi 304 Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cell”, Journal of Renewable and Sustainable Energy, Vol. 5, No. 2, p. 021407, 2013.
30. Miyazawa, A., Tada, E., and Nishikata, A., “Influence of Corrosion of Ss316l Bipolar Plate on Pefc Performance”, Journal of Power Sources, Vol. 231, pp. 226-233, 2013.
31. Mohammadi, N., Yari, M., and Allahkaram, S. R., “Characterization of PbO2 Coating Electrodeposited onto Stainless Steel 316l Substrate for Using as Pemfc's Bipolar Plates”, Surface and Coatings Technology, Vol. 236, pp. 341-346, 2013.
32. Park, J. H., Byun, D., and Lee, J. K., “Employment of Fluorine Doped Zinc Tin Oxide (Znsnox:F) Coating Layer on Stainless Steel 316 for a Bipolar Plate for PEMFC”, Materials Chemistry and Physics, Vol. 128, No. 1-2, pp. 39-43, 2011.
33. Yamaura, S., Kim, S. C., and Inoue, A., “Ni-Based Amorphous Alloy-Coating for Bipolar Plate of Pem Fuel Cell by Electrochemical Plating”, Journal of Physics: Conference Series, Vol. 417, No. 1, p. 012029, 2013.
34. Kumagai, M., Myung, S.-T., Ichikawa, T., and Yashiro, H., “Evaluation of Polymer Electrolyte Membrane Fuel Cells by Electrochemical Impedance Spectroscopy under Different Operation Conditions and Corrosion”, Journal of Power Sources, Vol. 195, No. 17, pp. 5501-5507, 2010.
35. Oyarce, A., Holmström, N., Bodén, A., Lagergren, C., and Lindbergh, G., “Operating Conditions Affecting the Contact Resistance of Bi-Polar Plates in Proton Exchange Membrane Fuel Cells”, Journal of Power Sources, Vol. 231, pp. 246-255, 2013.
36. Ihonen, J., Jaouen, F., Lindbergh, G., and Sundholm, G., “A Novel Polymer Electrolyte Fuel Cell for Laboratory Investigations and in-Situ Contact Resistance Measurements”, Electrochimica Acta. Vol. 46, No. 19, pp. 2899-2911, 2001.
37. Oyarce, A., “Electrode Degradation in Proton Exchange Membrane Fuel Cells” Ph.D Thesis, Applied Electrochemistry, Department of Chemical Engineering, Vol. Doctoral thesis, Stockholm: KTH Royal Institute of Technology, 77 p, 2013.
38. Han, Q., Cui, S., Pu, N., Chen, J., Liu, K., and Wei, X., “A Study on Pulse Plating Amorphous Ni-Mo Alloy Coating Used as Her Cathode in Alkaline Medium”, International Journal of Hydrogen Energy, Vol. 35, No. 11, pp. 5194-5201. 2010.
39. Cheng-hui, G., “Formation Mechanism of Amorphous Ni-Fe-P Alloy by Electrodeposition”, Transactions of Nonferrous Metals Society of China, Vol. 15, No. 3, pp. 504-509. 2005.
40. Halim, J., Abdel-Karim, R., El-Raghy, S., Nabil, M., and Waheed, A., “Electrodeposition and Characterization of Nanocrystalline Ni-Mo Catalysts for Hydrogen Production”, Journal of Nanomaterials, Vol. 2012, pp. 18-18, 2012.
42. Lin, C.- H., and Tsai, S. -Y., “An Investigation of Coated Aluminium Bipolar Plates for Pemfc”, Applied Energy, Vol. 100, pp. 87-92, 2012.
43. Yun, Y. -H., “Deposition of Gold-Titanium and Gold-Nickel Coatings on Electropolished 316l Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells”, International Journal of Hydrogen Energy, Vol. 35, 4, pp. 1713-1718, 2010.
44. Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water”, Industrial & Engineering Chemistry Research, Vol. 28, No. 8, pp. 988-994, 1936.
45. Blossey, R., “Self-Cleaning Surfaces-Virtual Realities”, Nature Materials, Vol. 2, No. 5, pp. 301-306, 2003.
46. Yoshimitsu, Z., Nakajima, A., Watanabe, T., and Hashimoto, K., “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets”, Langmuir, Vol. 18, No. 15, pp. 5818-5822, 2002.
47. Quéré, D., “Rough Ideas on Wetting”, Journal of Physics A, Vol. 313, No. 1-2, pp. 32-46, 2002.
48. Feng, X., Zhai, J., and Jiang, L., “The Fabrication and Switchable Superhydrophobicity of Tio2 Nanorod Films”, Angewandte Chemie International Edition, Vol. 44, No. 32, pp. 5115-5118, 2005.
49. Buckton, G., “Characterisation of Small Changes in the Physical Properties of Powders of Significance for Dry Powder Inhaler Formulations”, Advanced Drug Delivery Reviews, Vol. 26, No. 1, pp. 17-27, 1997.
50. Newell, H., Buckton, G., Butler, D., Thielmann, F., and Williams, D., “The Use of Inverse Phase Gas Chromatography to Measure the Surface Energy of Crystalline, Amorphous, and Recently Milled Lactose”, AAPS PharmSciTech, Vol. 18, No. 5, pp. 662-666, 2001.
51. Shete, G., Puri, V., Kumar, L., and Bansal, A. K., “Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples”, AAPS PharmSciTech, Vol. 11, No. 2, pp. 598-609, 2010.
52. Wang, W. H., Dong, C., and Shek, C. H., “Bulk Metallic Glasses”, Materials Science and Engineering: R: Reports, Vol. 44, No. 2-3, pp. 45-89, 2004.
53. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M., and Ma, E., “Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses”, Nature, Vol. 439, No. 7075, pp. 419-425, 2006.
54. Bai, C. -Y., Wen, T. -M., Hou, K. -H., Pu, N. -W., and Ger, M. -D., “The Characteristics and Performance of Aisi 1045 Steel Bipolar Plates with Chromized Coatings for Proton Exchange Membrane Fuel Cells”, International Journal of Hydrogen Energy, Vol. 36, 6, pp. 3975-3983, 2011.
55. Guo, L., Zhang, D., Duan, L., Wang, Z., and Tuan, W. -H., “Formation of Nano-Contacts on Fe-Ni-Cr Alloy for Bipolar Plate of Proton Exchange Membrane Fuel Cell”, International Journal of Hydrogen Energy, Vol. 36, No. 11, pp. 6832-6839, 2011.

ارتقاء امنیت وب با وف ایرانی