اثر زمان آسیاکاری و افزودن آلیاژ Ce-75Ni 25 بر خواص واجذب هیدروژن کامپوزیت پایه هیدرید منیزیم تولیدی به‌روش آلیاژسازی مکانیکی

نویسندگان

گروه مهندسی مواد، دانشگاه صنعتی نوشیروانی، بابل

چکیده

در این تحقیق، ماده کامپوزیتی با ترکیب هیدرید منیزیم- 10 درصد وزنی (25 سریم- 75 نیکل) با آسیاکاری پودر هیدرید منیزیم و آلیاژ سریم- نیکل که به‌روش ذوب مجدد قوسی تحت خلاء تولید شده است، تهیه ‌شد. اثر زمان ‌آسیا و افزودنی بر ساختار هیدرید منیزیم شامل اندازه کریستالیت، کرنش شبکه و اندازه ذره و همچنین خواص واجذب هیدروژن کامپوزیت‌های حاصل ارزیابی ‌شد و با هیدرید منیزیم خالص آسیاکاری شده مقایسه شد. نشان داده شد که افزودن آلیاژ 25 سریم- 75 نیکل به هیدرید منیزیم منجر به اندازه ذره کوچک‌تر می‌‌‌شود. به‌عنوان یک نتیجه، دمای واجذب هیدرید منیزیم فعال شده مکانیکی، از 340 به 280 درجه سانتی‌گراد برای کامپوزیت یک (پنج ساعت آلیاژسازی مکانیکی) و به 290 درجه سانتی‌گراد برای کامپوزیت دو (15 ساعت آلیاژسازی مکانیکی) کاهش یافته است. بهبود بیشتر در دمای واجذب کامپوزیت یک می‌تواند مربوط به اندازه ذرات ریز‌تر و مقدار بیشتر فاز Mg2NiH4 مرتبط باشد که با نتایج آنتالپی محاسبه شده مطابقت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Milling Time and 25Ce-75Ni Addition on Hydrogen Desorption Properties of Magnesium Hydride-based Composite Produced by Mechanical Alloying

نویسندگان [English]

  • F. Z. Akbarzadeh
  • M. Rajabi
Department of Materials Engineering, Noshirvani University of Technology, Babol, Iran
چکیده [English]

In this study, the composite material with composition of MgH2-10 wt% (25Ce-75Ni) has been prepared by co-milling of magnesium hydride powder with Ce-Ni alloy produced by vacuum arc remelting method. The effect of milling time and additive on magnesium hydride structure, i.e. crystallite size, lattice strain and particle size, and also hydrogen desorption properties of obtained composite were evaluated and compared with pure milled MgH2. It has been shown that the addition of 25Ce-75Ni alloy to magnesium hydride yielded a finer particle size. As a consequence, the desorption temperature of mechanically activated MgH2 decreased from 340 °C to 280 °C for composite 1(5 h mechanical alloying) and to 290 °C for composite 2 (15 h mechanical alloying). Further improvement in the hydrogen desorption tempreture of composite 1 can be related to finer particle size and higher Mg2NiH4 phase value, which corresponded with calculated enthalpy results.

کلیدواژه‌ها [English]

  • MgH2
  • Ce-Ni alloy
  • Hydrogen desorption temperature
  • mechanical alloying
1. Shang, C. X., Bououdina, M., Song, Y., and Guo, Z. X., “Mechanical Alloying and Electronic Simulations of (MgH2+M) Systems (M=Al, Ti, Fe, Ni, Cu and Nb) for Hydrogen Storage”, International Journal of Hydrogen Energy, Vol. 29, pp. 73-80, 2004.
2. Chitsazkhoyi, L., Raygan, Sh., and Pourabdoli, M., “Mechanical Milling of Mg, Ni and Y Powder Mixture and Investigating the Effects of Produced Nanostructured MgNi4Y on Hydrogen Desorption Properties of MgH2”, International Journal of Hydrogen Energy ,Vol. 38, pp. 6687-6693, 2013.
3. Wang, X. L., Tu, J. P., Wang, C. H., Zhang, X. B., Chen, C. P., and Zhao, X. B., “Hydrogen Storage Properties of Nanocrystalline Mg-Ce/Ni Composite”, Journal of Power Sources, Vol. 159, pp. 163-166, 2006.
4. Simchi, H., Kaflou, A., and Simchi, A., “Synergetic Effect of Ni and Nb2O5 on Dehydrogenation Properties of Nanostructured MgH2 Synthesized by High-Energy Mechanical Alloying”, International Journal of Hydrogen Energy, Vol. 34, pp. 7724-7730, 2009.
5. Ouyang, L. Z., Yang, X. S., Zhu, M., Liu, J. W., Dong, H. W., Sun, D. L., Zou, J., and Yao, X. D., “Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in Situ Formed CeH2.73 and Ni in CeH2.73-MgH2-Ni Nanocomposites”, The Journal of Physiccal Chemistry, Vol. 118, pp. 7808-7820, 2014.
7. Motavalli, A., and Rajabi, M., “Catalytic Effect of Melt-Spun Ni3FeMn Alloy on Hydrogen Desorption Properties of Nanocrystalline MgH2 Synthesized by Mechanical Alloying”, International Journal of Hydrogen Energy, Vol. 39, pp. 17047-17053, 2014.
8. Zhang, Y., Liu, Z., Li, B., Ma, Z., Guo, S., and Wang, X., “Structure and Electrochemical Performances of Mg2Ni1−xMnx (x = 0–0.4) Electrode Alloys Prepared by Melt Spinning”, Electrochimica Acta, Vol. 56, pp. 427-434, 2010.
9. Agarwal, S., Aurora, A., Jain, A., Jain, I. P., and Montone, A., “Catalytic Effect of ZrCrNi Alloy on Hydriding Properties of MgH2”, International Journal of Hydrogen Energy, Vol. 34, pp. 9157-9162, 2009.
10. Palade, P., Sartori, S., Maddalena, A., Principi, G., Russo, S. L., Lazarescu, M., Schinteie, G., Kuncser, V., and Filoti, G., “Hydrogen Storage in Mg-Ni-Fe Compounds Prepared by Melt Spinning and Ball Milling”, Journal of Alloys and Compounds, Vol. 415, pp. 170-176, 2006.
11. Bobet, J. L., Esportes, P. L., Roquefere, J. G., Chevalier, B., Asano, B., Sakaki, K., and Akiba, E., “A Preliminary Study of Some Pseudo-AB2 Compounds: RENi4Mg with RE ¼ La, Ce and Gd, Structural and Hydrogen Sorption Properties”, International Journal Hydrogen Energy, Vol. 32, pp. 2422-2428, 2007.
12. Liu, G., Wang, K., Lia, J., Wang, Y., and Yuan, H., “Enhancement of Hydrogen Desorption in Magnesium Hydride Catalyzed by Grapheme Nanosheets Supported Ni-CeOx Hybrid Nanocatalyst”, International Journal of Hydrogen Energy, Vol. 41, pp. 10786-10794, 2016.
13. Li, Z. P., Liu, B. H., Arai, K. H., Morigasaki, N., and Suda, S., “Protide Compounds in Hydrogen Storage Systems”, Journal of Alloys and Compounds, Vol. 356, pp. 469-474, 2003.
14. Shang, C. X., and Guo, Z. X., “Structural and Desorption Characterisations of Milled (MgH2 + Y, Ce) Powder Mixtures for Hydrogen Storage”, International Journal of Hydrogen Energy, Vol. 32, pp. 2920-2925, 2007.
15. Lin, H. J., Tang, J. J., Yu, Q., Wang., H., Ouyang, L. Z., Zhao, Y. J., Liu, J. W., Wang, W. H., and Zhu, M., “Symbiotic CeH2.73/CeO2 Catalyst: A novel Hydrogen Pump”, Nano Energy, Vol. 9, pp. 80-87, 2014.
16. Spassov, T., Lyubenova, L., Ko¨ster, U., and Baro, M. D., “Mg-Ni-RE Nanocrystalline Alloys for Hydrogen Storage”, Materials Science and Engineering, Vol. 794, pp. 375-377, 2004.
17. Gulicovski, J., Lovre, Z. R., Kurko, S., Vujasin, R., Jovanovic, Z., Matovic, L., and Novakovic, J. G., “Influence of Vacant CeO2 Nanostructured Ceramics on MgH2 Hydrogen Desorption Properties”, Ceramics International, Vol. 38, pp. 1181-1186, 2012.
18. Ismail, M., Mustafa, N. S., Juahir, N., and Halim, F. A., “Catalytic Effect of CeCl3 on the Hydrogen Storage Properties of MgH2”, Materials Chemistry and Physics, Vol. 170, pp. 77-82, 2016.
19. Williamson, G. K., and Hall, W. H., “X-ray line Broadening from Filed Aluminum and Wolfram”, Acta Metall, Vol. 1, pp. 21-31, 1953.
20. Varin, R. A., Czujko, T., Chiu, C., and Wronski, Z., “Particle Size Effects on the Desorption Properties of Nanostructured Magnesium Hydride (MgH2) Synthesized by Controlled Reactive Mechanical Milling (CRMM)”, Journal of Alloys and Compounds, Vol. 424, p. 356, 2006.
21. Mahmoudi, N., Kaflou, A., and Simchi, A., “Hydrogen Desorption Properties of MgH2-TiCr1.2Fe0.6 Nanocomposite Prepared by High-Energy Mechanical Alloying”, Journal of Power Sources, Vol. 196, pp. 4604-4608, 2011.
22. Khodaparast, V., and Rajabi, M., “Hydrogen Desorption Properties of MgH2-5Wt% Ti-Mn-Cr Composite via Combined Melt Spinning and Mechanical Alloying”, Procedia Materials Science, Vol. 11, pp. 611-615, 2015.
23. Varin, R. A., Czujko, T., and Wronski, Z., “Particle Size, Grain Size and ɣ-MgH2 Effects on the Desorption Properties on Nanocrystalline Commercial Magnesium Hydride Processes by Controlled Mechanical Milling”, Nanotechnology, Vol. 17, pp. 3856-3865, 2006.
24. Gasan, H., Celik, O. N., Aydinbeyli, N., and Yaman, M., “Effect of V, Nb, Ti and Graphite Additions on the Hydrogen Desorption Temperature of Magnesium Hydride”, International Journal of Hydrogen Energy, Vol. 37, pp. 1912-1918, 2012.
25. Gennari, F. C., Castro, F. J., and Urretavizcaya, G., “Hydrogen Desorption Behavior from Magnesium Hydrides Synthesized by Reactive Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 321, pp. 46-53, 2001.
26. Ares, J. R., Aguey-Zinsou, K. F., Klassen, T., and Bormann, R., “Influence of Impurities on the Milling Process of MgH2”, Journals of Alloys and Compounds, Vol. 729, pp. 434-435, 2007.
27. Liang, G., “Synthesis and Hydrogen Storage Properties of Mg-based Alloys”, Journal of Alloys and Compounds, Vol. 370, pp. 123-128, 2004.
28. Lin, H. J., Ouyang, L. Z., Wang, H., Zhao, D. Q., Wang, W. H., Sun, D. L., and Zhu, M., “Hydrogen Storage Properties of Mg-Ce-Ni Nanocomposite Induced from Amorphous Precursor With the Highest Mg”, International Journal of Hydrogen Energy, Vol. 37, pp. 14329-14335, 2012.
29. Motavalli, A., Rajabi, M., and Gholipoor, A., “Effect of Milling Time on Hydrogen Desorption Properties of Nanocrystalline MgH2”, Journal of Advanced Materials and Processing, Vol. 2, pp. 67-72, 2014.
30. Song, M. Y., Baek, S. H., Bobet, J. L., and Hong, S. H., “Hydrogen Storage Properties of a Mg-Ni-Fe Mixture Prepared via Planetary Ball Milling in a H2 Atmosphere”, International Journal of Hydrogen Energy, Vol. 35, pp. 10366-10372, 2010.
31. Mahmoudi, N., Kaflou, A., and Simchi, A., “Synthesis of a Nanostructured MgH2-Ti Alloy Composite for Hydrogen Storage via Combined Vacuum Arc Remelting and Mechanical Alloying”, Materials Letters, Vol. 65, pp. 1120-1122, 2011.

تحت نظارت وف ایرانی