بررسی اثر پلی‌اتیلن گلایکول بر رفتار ترشوندگی سطوح آبگریز ZnO تهیه شده به‌روش رسوب‌دهی حمام شیمیایی

نویسندگان

دانشکده مهندسی شیمی نفت و گاز، دانشگاه علم و صنعت ایران، تهران

چکیده

در این تحقیق، سطح فوق آبگریز ZnO به‌روش رسوب‌دهی حمام شیمیایی بر توری از جنس فولاد زنگ‌نزن به‌صورت تک مرحله‌ای و بدون اصلاح سطح تهیه شده و تأثیر اضافه کردن پلی‌اتیلن گلایکول به‌عنوان افزودنی آلی و همچنین نوع ماده بازی بر مورفولوژی و به تبع آن خواص ترشوندگی سطح مورد بررسی قرار گرفته است. برای ارزیابی نمونه سنتز شده از آنالیزهای پراش سنج پرتو ایکس، زبری‌سنج سوزنی، تصاویر میکروسکوپی الکترونی روبشی، طیف‌سنجی مادون قرمز و میکرو رامان استفاده شد. مطالعه میکروساختار نمونه‌های ساخته شده نشان داد که اضافه کردن پلی‌اتیلن گلایکول منجر به تشکیل لایه یکنواخت و متراکم از میله‌های ZnO شاخه‌دار با متوسط طول 5/1 میکرومتر و قطر 95 نانومتر بر سطح زیرلایه شده است. بررسی نتایج ترشوندگی سطح تأیید کرد نمونه ساخته شده با هگزامتیلن تترامین و در حضور 05/0 میلی‌مولار پلی‌اتیلن گلایکول با ساختار میکرو- نانو درختسان شاخه‌دار با زاویه تماس 5/5±2/158 درجه و پسماند زاویه تماس 5/3 درجه بهترین رفتار فوق آبگریزی را داشته است. سطوح تهیه شده همچنین از پایداری شیمیایی بسیار خوب در محدوده pH، چهار تا هشت برخوردار هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Effect of Polyethylene Glycol Addition on the Wetting Properties of ZnO Superhydrophobic Surfaces Prepared via Chemical Bath Deposition Method

نویسندگان [English]

  • E. Velayi
  • R. Norouzbeigi
School of Chemical Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ray Diffraction (XRD), stylus profilometer, Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and Raman Spectrometer. The microstructure studies showed that the addition of PEG led to formation of densely branched and uniform ZnO rods with a length of 1.5 µm and a diameter of about 95 nm on the substrate. The surface wettability studies confirmed that the sample prepared in the presence of hexamethylenetetramine (HMTA) and 0.05 mM PEG with branched tree-like micro/nanostructure exhibited excellent superhydrophobic properties with the water contact angle (WCA) of 158.2°±1.5° and contact angle hysteresis (CAH) of 3.5°. In addition, the superhydrophobic showed good  chemical stability in the pH range of 4 to 8.

کلیدواژه‌ها [English]

  • Chemical bath deposition method
  • Superhydrophobic surface
  • Polyethylene glycol
  • Static water contact angle
  • Chemical stability
1. Celia, E., Darmanin, T., Taffin de Givenchy, E., and Amigoni, G., “Recent Advances in Designing Superhydrophobic Surfaces”, Journal of Colloid and Interface Science, Vol. 402, pp. 1-18, 2013.
2. Chen, A., Peng, X., Koczkur, K., and Miller, B., “Super-hydrophobic Tin Oxide Nanoflowers”, Chemical Communications, pp. 1964-1965, 2004.
3. Wermuth, L., Kolb, M., Mertens, T., Strobl, T., and Raps, D., “Superhydrophobic Surfaces Based on Self-organized TiO2-nanotubes”, Progress in Organic Coatings, Vol. 87, pp. 242-249, 2015.
4. Rezaei, S., Seyfi, J., Hejazi, I., Davachi, S. M., and Khonakdar, H. A., “POSS Fernlike Structure as a Support for TiO2 Nanoparticles in Fabrication of Superhydrophobic Polymer-based Nanocomposite Surfaces”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 520, pp. 514-521, 2017.
5. Taghvaei, E., Moosavi, A., Nouri-Borujerdi, A., Daeian, M. A., and Vafaeinejad, S., “Superhydrophobic Surfaces with a Dual-layer Micro- and Nanoparticle Coating for Drag reduction”, Energy, Vol. 125, pp. 1-10, 2017.
6. Chen, T., Ge, S., Liu, H., Sun, Q., Zhu, W., Yan, W., and Qi, J., “Fabrication of Low Adhesive Superhydrophobic Surfaces using Nano Cu/Al2O3 Ni-Cr Composited Electro-brush Plating”, Applied Surface Science, Vol. 356, pp. 81-90, 2015.
7. Barshilia, H. C., Selvakumar, N., Pillai, N., Devi, L. M., and Rajam, K. S., “Wettability of ZnO: A Comparison of Reactively Sputtered; Thermally Oxidized and Vacuum Annealed Coatings”, Applied Surface Science, Vol. 257, pp. 4410-4417, 2011.
8. Shinde, V. R. , Gujar, T. P., Lokhande, C. D., Mane, R. S., and Han, S. -H., “Use of Chemically Synthesized ZnO Thin Film as a Liquefied Petroleum Gas Sensor”, Materials Science and Engineering: B, Vol. 137, pp. 119-125, 2007.
9. Wang, M., Kim, E. J., Hahn, S. H., Park, C., and Koo, K. -K., “Controlled Crystal Growth and Crystallite Orientation in ZnO Films/Nanorods Prepared by Chemical Bath Deposition: Effect of Solvent”, Crystal Growth & Design, Vol. 8, pp. 501-506, 2008.
10. Latthe, S. S ,Gurav, A. B., Maruti, C. S., and Vhatkar, R. S., “Recent Progress in Preparation of Superhydrophobic Surfaces: A Review”, Journal of Surface Engineered Materials and Advanced Technology, Vol. 2, pp. 76-94, 2012.
11. Poorebrahimi, S., and Norouzbeigi, R., “A Facile Solution-immersion Process for the Fabrication of Superhydrophobic Gibbsite Films with a Binary Micro-nano Structure: Effective Factors Optimization via Taguchi Method”, Applied Surface Science,Vol. 356, pp. 157-166, 2015.
12. Milionis, A., Loth, E., and Bayer, I. S., “Recent Advances in the Mechanical Durability of Superhydrophobic Materials”, Advances in Colloid and Interface Science, Vol. 229, pp. 57-79, 2016.
13. Robin, H. A. R., and Marmur, A., Non-wettable Surfaces: Theory, Preparation and Applications, 1st ed., p. 391, Royal Society of Chemistry, United Kingdom, 2017.
14. Valipour Motlagh, N., Birjandi, F. C., and Sargolzaei, J., “Super-non-wettable Surfaces: A Review”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 448, pp. 93-106, 2014.
15. Senez, V., Thomy, V., and Dufour, R, Characterization Techniques for Super Non-Wetting Surfaces, in: Nanotechnologies for Synthetic Super Non-Wetting Surfaces, p.109, John Wiley & Sons, Inc, 2014.
16. Poornajar, M., Marashi, P., Haghshenas Fatmehsari, D., and Kolahdouz Esfahani, M., “Synthesis of ZnO Nanorods via Chemical Bath Deposition Method: The Effects of Physicochemical Factors”, Ceramics International, Vol. 42, pp. 173-184, 2016.
17. Siddaramanna, A., Saleema, N., and Sarkar, D. K., “A Versatile Cost-effective and One Step Process to Engineer ZnO Superhydrophobic Surfaces on Al Substrate”, Applied Surface Science, Vol. 311, pp. 182-188, 2014.
18. Tian, D., Zhang, X., Wang, X., Zhai, J., and Jiang, L., “Micro/nanoscale Hierarchical Structured ZnO Mesh Film for Separation of Water and Oil”, Physical Chemistry Chemical Physics, Vol. 13, pp. 14606-14610, 2011.
19. Kwak, G., Seol, M., Tak, Y., and Yong, K., “Superhydrophobic ZnO Nanowire Surface: Chemical Modification and Effects of UV Irradiation”, The Journal of Physical Chemistry C, Vol. 113, pp. 12085-12089, 2009.
20. Gao, Y., Gereige, I., El Labban, A., Cha, D., Isimjan, T. T., and Beaujuge, P. M., “Highly Transparent and UV-Resistant Superhydrophobic SiO2-Coated ZnO Nanorod Arrays”, ACS Applied Materials & Interfaces, Vol. 6, pp. 2219-2223, 2014.
21. Tang, L., Zhou, B., Tian, Y., Sun, F., Li, Y., and Wang, Z., “Synthesis and Surface Hydrophobic Functionalization of ZnO Nanocrystals via a Facile One-step Solution Method”, Chemical Engineering Journal, Vol. 139, pp. 642-648, 2008.
22. Li, H., Li, Y., and Liu, Q., “ZnO Nanorod Array-coated Mesh Film for the Separation of Water and Oil”, Nanoscale Research Letters, Vol. 8, pp. 1-6, 2013.
23. Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., and Zhu, D., “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films”, Journal of the American Chemical Society, Vol. 126, pp. 62-63, 2004.
24. Qi, G., Zhang, H., and Yuan, Z., “Superhydrophobic Brocades Modified with Aligned ZnO Nanorods”, Applied Surface Science, Vol. 258, pp. 662-667, 2011.
25. Gurav, A. B., Latthe, S. S., Vhatkar, R. S. , Lee, J. -G., Kim, D. -Y., Park, J. -J., and Yoon, S. S., “Superhydrophobic Surface Decorated with Vertical ZnO Nanorods Modified by Stearic Acid”, Ceramics International, Vol. 40, pp. 7151-7160, 2014.
26. Ennaceri, H., Wang, L., Erfurt, D., Riedel, W., Mangalgiri, G., Khaldoun, A., El Kenz, A., Benyoussef, A., and Ennaoui, A., “Water-resistant Surfaces using Zinc Oxide Structured Nanorod Arrays with Switchable Wetting Property”, Surface and Coatings Technology, Vol. 299, pp. 169-176. 2016.
27. Kuan, C. Y., Hon, M. H., Chou, J. M., and Leu, I. C., “Wetting Characteristics on Micro/Nanostructured Zinc Oxide Coatings”, Journal of The Electrochemical Society, Vol. 156, pp. J32-J36, 2009.
28. Sasmal, A. K., Mondal, C., Sinha, A. K., Gauri, S. S., Pal, J., Aditya, T., Ganguly, M., Dey, S., and Pal, T., “Fabrication of Superhydrophobic Copper Surface on Various Substrates for Roll-off, Self-Cleaning, and Water/Oil Separation”, ACS Applied Materials & Interfaces, Vol. 6, pp. 22034-22043, 2014.
29. Khorsand, S., Raeissi, K., Ashrafizadeh, F., and Arenas, M. A., “Super-hydrophobic Nickel-Cobalt Alloy Coating with Micro-nano Flower-like Structure”, Chemical Engineering Journal, Vol. 273, pp. 638-646, 2015.
30. Gromyko, I., Krunks, M., Dedova, T., Katerski, A., Klauson, D., and Oja Acik, I., “Surface Properties of Sprayed and Electrodeposited ZnO Rod Layers”, Applied Surface Science, Vol. 405, pp. 521-528, 2017.
31. Feng, W., Wang, B., Huang, P., Wang, X. , Yu, J., and Wang, C., “Wet Chemistry Synthesis of ZnO Crystals with Hexamethylenetetramine (HMTA): Understanding the Role of HMTA in the Formation of ZnO Crystals”, Materials Science in Semiconductor Processing, Vol. 41, pp. 462-469, 2016.
32. Parize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., and Consonni, V., “Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition”, The Journal of Physical Chemistry C, Vol. 120, pp. 5242-5250, 2016.
33. Cheng, S. L., Syu, J. H., Liao, S. Y., Lin, C. F., and Yeh, P. Y., “Growth Kinetics and Wettability Conversion of Vertically-aligned ZnO Nanowires Synthesized by a Hydrothermal Method”, RSC Advances, Vol. 5, pp. 67752-67758, 2015.
34. Wang, F., Qin, X., Zhu, D., Meng, Y., Yang, L., and Ming, Y., “PEG-assisted Hydrothermal Synthesis and Photoluminescence of Flower-like ZnO Microstructures”, Materials Letters, Vol. 117, pp. 131-133, 2014.
35. Duan, J., Huang, X., and Wang, E., “PEG-assisted Synthesis of ZnO Nanotubes”, Materials Letters, Vol. 60, pp. 1918-1921, 2006.
36. Parra, M. R., and Haque, F. Z., “Poly (Ethylene Glycol) (PEG)-assisted Shape-controlled Synthesis of One-dimensional ZnO Nanorods”, Optik - International Journal for Light and Electron Optics, Vol. 126, pp. 1562-1566, 2016.
37. Caicedo, N., Thomann, J. S., Leturcq, R., and Lenoble, D., “Aspect Ratio Improvement of ZnO Nanowires Grown in Liquid Phase by using Step-by-step Sequential Growth”, CrystEngComm, Vol. 18, pp. 5502-5511, 2016.
38. Du, X., Huang, X., Li, X., Meng, X., Yao, L., He, J., Huang, H., and Zhang, X., “Wettability Behavior of Special Microscale ZnO Nail-coated Mesh Films for Oil-water Separation”, Journal of Colloid and Interface Science, Vol. 458, pp. 79-86, 2015.
39. Coninck, J. de, Dunlop, F., and Huillet, T., “Wetting in 1+1 Dimensions with Two-scale Roughness”, Physica A: Statistical Mechanics and its Applications, Vol. 438 , pp. 398-415, 2015.
40. Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G., and Bormashenko, E., “Why Do Pigeon Feathers Repel Water? Hydrophobicity of Pennae, Cassie-Baxter Wetting Hypothesis and Cassie-Wenzel Capillarity-Induced Wetting Transition”, Journal of Colloid and Interface Science, Vol. 311, pp. 212-216, 2007.
41. Cassie, A. B. D., and Baxter, S., “Wettability of Porous Surfaces”, Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1944.
42. Li, L., Roethel, S., Breedveld, V., and Hess, D. W., “Creation of Low Hysteresis Superhydrophobic Paper by Deposition of Hydrophilic Diamond-like Carbon Films”, Cellulose, Vol. 20, pp. 3219-3226, 2013.
43. Mundo, R. Di, Bottiglione, F., and Carbone, G., “Cassie state robustness of plasma generated randomly nano-rough surfaces”, Applied Surface Science, Vol. 316, pp. 324-332, 2014.
44. Bormashenko, E., Bormashenko, Y.,Whyman, G., Pogreb, R., and Stanevsky, O., “Micrometrically Scaled Textured Metallic Hydrophobic Interfaces Validate the Cassie-Baxter Wetting Hypothesis”, Journal of Colloid and Interface Science, Vol. 302, pp. 308-311, 2006.
45. Shirtcliffe, N. J., McHale, G., Newton, M. I., and Perry, C. C., “Wetting and Wetting Transitions on Copper-based Super-hydrophobic Surfaces”, Langmuir, Vol. 21, pp. 937-943, 2005.
46. Abdelsalam, M. E., Bartlett, P. N., Kelf, T., and Baumberg, J., “Wetting of Regularly Structured Gold Surfaces”, Langmuir, Vol. 21, pp. 1753-1757, 2005.
47. Johnson, R. E., and Dettre, R. H., “Contact Angle Hysteresis, in: Contact Angle, Wettability, and Adhesion”, American Chemical Society, pp. 112-135, 1964.
48. Marmur, A., “Wetting on Hydrophobic Rough Surfaces:  To Be Heterogeneous or Not To Be?”, Langmuir, Vol. 19, pp. 8343-8348, 2003.
49. Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T., “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces”, Langmuir, Vol. 16, pp. 5754-5760, 2000.
50. Leese, H., Bhurtun, V., Lee, K. P., and Mattia, D., “Wetting Behaviour of Hydrophilic and Hydrophobic Nanostructured Porous Anodic Alumina”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 420, pp. 53-58, 2013.
51. Cengiz, U., and Elif Cansoy, C., “Applicability of Cassie-Baxter equation for superhydrophobic fluoropolymer-silica composite films”, Applied Surface Science, Vol. 335, pp. 99-106, 2015.
52. Erbil, H. Y., Contact Angle of Liquid Drops on Solids, in: Surface Chemistry, p 308, Blackwell Publishing Ltd, 2009.
53. Erbil, H. Y., McHale, G., Rowan, S. M., and Newton, M. I., “Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation”, Langmuir, Vol. 15, pp. 7378-7385, 1999.
54. De Gennes, P. G., Brochard-Wyart, F., and Quere, D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, 2004.
55. Matin, A., Merah, N. , and Ibrahim, A., “Superhydrophobic and Self-cleaning Surfaces Prepared from a Commercial Silane using a Single-step Drop-coating Method”, Progress in Organic Coatings, Vol. 99, pp. 322-329, 2016.
56. Zhu, T., Cai, C., Guo, J., Wang, R., Zhao, N., and Xu, J.,“Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion”, ACS Applied Materials & Interfaces, Vol. 9, pp. 10224-10232, 2017.
57. Lafuma, A., and Quere, D., “Superhydrophobic States”, Nature Materials, Vol. 2, pp. 457-460, 2003.
58. Tian, D., Guo, Z., Wang, Y., Li, W., Zhang, X., Zhai, J., and Jiang, L., “Phototunable Underwater Oil Adhesion of Micro/Nanoscale Hierarchical-Structured ZnO Mesh Films with Switchable Contact Mode”, Advanced Functional Materials, Vol. 24, pp. 536-542, 2014.
59. Raji, R., and Gopchandran, K. G., “ZnO Nanostructures with Tunable Visible Luminescence: Effects of Kinetics of Chemical Reduction and Annealing”, Journal of Science: Advanced Materials and Devices, Vol. 2, pp. 51-58, 2017.
60. Laurenti, M., Cauda, V., Gazia, R., Fontana, M., Rivera, V. F., Bianco, S., and Canavese, G., “Wettability Control on ZnO Nanowires Driven by Seed Layer Properties”, European Journal of Inorganic Chemistry, Vol. 2013, pp. 2520-2527, 2013.
61. Yadav, K., Mehta, B. R., Bhattacharya, S., and Singh, J. P., “A Fast and Effective Approach for Reversible Wetting-Dewetting Transitions on ZnO Nanowires”, Scientific Reports, Vol. 6, pp. 35073-35082, 2016.

تحت نظارت وف ایرانی