اصلاح سطح ابرآبگریز پلیمر پلی‌پروپیلن با هدف بهبود برهم‌کنش‌های بیولوژیک

نویسندگان

دانشکده علوم و فناوری‌های نوین، گروه بیوتکنولوژی، دانشگاه اصفهان، اصفهان

چکیده

اهمیت ایجاد سطوح ابرآبگریز از طریق اصلاح ساختار و شیمی سطح در جلوگیری و یا به تأخیر انداختن تشکیل بیوفیلم است. این کار با هدف ارتقاء زیست‌سازگاری و بهبود خواص شیمیایی و بیولوژیکی سطح از طریق ایجاد ساختار زبری‌های چندگانه میکرو- نانو و کاهش انرژی آزاد سطح با کمک پلیمر آبگریز پرفلئورودودسیل تری کلروسیلان (FTCS) است. در این پژوهش به‌منظور ایجاد سطوح ابرآبگریز از یک مرحله پوشش‌دهی با نانوذرات دی‌اکسید تیتانیوم و یک مرحله فلئوروسیلانیزاسیون استفاده شد. سپس جهت ارزیابی خواص فیزیکوشیمیایی سطح اصلاح شده میکروسکوپی الکترونی روبشی (SEM)، طیف‌سنجی مادون قرمز (FTIR)، اندازه‌گیری زاویه تماس، بررسی میزان سمیت سلولی پوشش سطح (با استفاده از سلول‌های سرطانیHela, MCF-7  و سلول‌های فیبروبلاست انسانی) با روش MTT، میزان جذب پروتئین BSA با روش بردفورد و چسبندگی سلول باکتریایی(سویه‌های استافیلوکوکوس اورئوس، استافیلوکوکوس اپیدرمیدیس) با روش میکروتیتر مورد استفاده قرار گرفتند. نتایج حاصل افزایش زاویه تماس تا 156 درجه و کاهش انرژی سطح تا میزان 51/5 میلی‌نیوتن بر متر را در اثر تغییرات فیزیکو شیمیایی سطح نشان دادند. همچنین نتایج، کاهش چشم‌گیر میزان جذب پروتئین و چسبندگی سلولی باکتریایی را برای سطوح ابرآبگریز نشان دادند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Polypropylene Biological Interactions by using Superhydrophobic Surface Modification

نویسندگان [English]

  • A. Razmjou
  • E. Shirani
Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
چکیده [English]

The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS) . Here, we produced a superhydrophobic surface through TiO2 coating and flurosilanization methods. Then, in order to evaluate the physicochemical properties of the modified surfaces, they were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Contact Angle (CA), cell viability assay (using Hela and MCF-7 cancer cell lines as well as non-cancerous human fibroblast cells) by MTT, Bovine Serum Abumin (BSA) protein adsorption using Bradford and bacterial adhesion assay (Staphylococcus aureus and Staphylococcus epidermidis) using microtiter. Results showed that contact angle and surface energey of superhydrophobic modified surface increased to 150° and decreased to 5.51 mj/m2, respectively due to physicochemical modifications of the surface. In addition, the results showed a substantial reduction in protein adsorption and bacterial cell adhesion in superhydrophobic surface.

کلیدواژه‌ها [English]

  • Surface modification
  • Titanium dioxide nanoparticles
  • Protein adsorption
  • biocompatibility
  • Superhydrophobic surface
1. Jui-Che, L., and Cooper, S., “Surface Characterization and ex vivo Blood Compatibility Study of Plasmamodified Small Diameter Tubing: Effect of Sulphur Dioxide and Hexamethyl-disiloxane Plasmas”, Biomaterials, Vol. 16, pp. 1017-1023, 1995.
2. Song, W., and Mano, J. F., “Interactions Between Cells or Proteins and Surfaces Exhibiting Extreme Wettabilities”, Soft Matter, Vol. 9, pp. 2985-2999, 2013.
3. Zheng, Y., Gao, X., and Jiang, L., “Directional Adhesion of Superhydrophobic Butterfly Wings”, Soft Matter, Vol. 3, pp. 178-182, 2007.
4. Dale, C., Burns, P., McCutcheon, M., Hernandez-Alejandro, R., Eason, J., Gonwa, T., and Davis, C., “Bibliography Current”, World Literature, Vol. 8, p. 2243, 2008.
5. Gomathi, N., and Neogi, S., “Surface Modification of Polypropylene using Argon Plasma: Statistical Optimization of the Process Variables”, Applied Surface Science, Vol. 255, pp. 7590-7600, 2009.
6. Coen, M. C., Dietler, G., Kasas, S., and Gröning, P., “AFM Measurements of the Topography and the Roughness of ECR Plasma Treated Polypropylene”, Applied Surface Science, Vol. 103, pp. 27-34, 1996.
7. Shahidzadeh-Ahmadi, N., Chehimi, M., Arefi-Khonsari, F., Foulon-Belkacemi, N., Amouroux, J., and Delamar, M., “A Physicochemical Study of Oxygen Plasma-modified Polypropylene”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 105, pp. 277-289, 1995.
8. Lee, K. W., and McCarthy, T. J., “Surface-selective Hydroxylation of Polypropylene”, Macromolecules, Vol. 21, pp. 309-313, 1988.
9. Razmjou, A., Mansouri, J., Chen, V., Lim, M., and Amal, R., “Titania Nanocomposite Polyethersulfone Ultrafiltration Membranes Fabricated using a Low Temperature Hydrothermal Coating Process”, Journal of Membrane Science, Vol. 380, pp. 98-113, 2011.
10. Van Oss, C., Ju, L., Chaudhury, M., and Good, R., “Estimation of the Polar Parameters of the Surface Tension of Liquids by Contact Angle Measurements on Gels”, Journal of Colloid and Interface Science, Vol. 128, pp. 313-319, 1989.
11. Webb, K. H., Hasan, J., Truong, K. V., Crawford, J. R., and Ivanova, P. E., “Nature Inspired Structured Surfaces for Biomedical Applications”, Current Medicinal Chemistry, Vol. 18, pp. 3367-3375, 2011.
12. Hołysz, L., “Investigation of the Effect of Substrata on the Surface Free Energy Components of Silica Gel Determined by Thin Layer Wicking Method”, Journal of Materials Science, Vol. 35, pp. 6081-6091, 2000.
13. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley Online Library, 1986.
14. Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. A., Introduction to Spectroscopy, Cengage Learning, 2008.
15. Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., Macías-García, A., and Gómez-Serrano, V., “Preparation of Activated Carbon-SnO2, TiO2, and WO3 Catalysts. Study by FT-IR Spectroscopy”, Industrial & Engineering Chemistry Research, Vol. 55, pp. 5200-5206, 2016.
16. Zeitler, V. A., and Brown, C. A., “The Infrared Spectra of Some Ti-O-Si, Ti-O-Ti and Si-O-Si Compounds”, The Journal of Physical Chemistry, Vol. 61, pp. 1174-1177, 1957.
17. Pan, Z., Shahsavan, H., Zhang, W., Yang, F. K., and Zhao, B., “Superhydro-oleophobic Bio-inspired Polydimethylsiloxane Micropillared Surface via FDTS Coating/blending Approaches”, Applied Surface Science, Vol. 324, pp. 612-620, 2015.
18. Cassie, A., “Contact Angles”, Discussions of the Faraday Society, Vol. 3, pp. 11-16, 1948.
19. Marmur, A., “The Lotus Effect: Superhydrophobicity and Metastability”, Langmuir, Vol. 20, pp. 3517-3519, 2004.
20. Wang, S., and Jiang, L., “Definition of Superhydrophobic States”, Advanced Materials, Vol. 19, pp. 3423-3424, 2007.
21. Tuteja, A., Choi, W., Ma, M., Mabry, J. M., Mazzella, S. A., Rutledge, G. C., McKinley, G. H., and Cohen, R. E., “Designing Superoleophobic Surfaces”, Science, Vol. 318, pp. 1618-1622, 2007.
22. Tamada, Y., and Ikada, Y., “Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces”, Journal of Colloid and Interface Science, Vol. 155, pp. 334-339, 1993.
23. Lee, J. H., Lee, J. W., Khang, G., and Lee, H. B., “Interaction of Cells on Chargeable Functional Group Gradient Surfaces”, Biomaterials, Vol. 18, pp. 351-358, 1997.
24. Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., and Van Aken, W. G., “Interaction of Cultured Human Endothelial Cells with Polymeric Surfaces of Different Wettabilities”, Biomaterials, Vol. 6, pp. 403-408, 1985.
25. Tamada, Y., and Ikada, Y., “Cell Attachment to Various Polymer Surfaces”, In Polymers in Medicine II, Springer, pp. 101-115, 1986.
26. Moazzam, P., Razmjou, A., Golabi, M., Shokri, D., and Landarani‐Isfahani, A., “Investigating the BSA Protein Adsorption and Bacterial Adhesion of Al‐alloy Surfaces After Creating a Hierarchical (Micro/nano) Superhydrophobic Structure”, Journal of Biomedical Materials Research Part A, Vol. 104, pp. 2220-2233, 2016.
27. Koc, Y., De Mello, A. J., McHale, G., Newton, M. I., Roach, P., and Shirtcliffe, N. J., “Nano-scale Superhydrophobicity: Suppression of Protein Adsorption and Promotion of Flow-induced Detachment”, Lab on a Chip, Vol. 8, pp. 582-586, 2008.
28. Zhu, H., Guo, Z., and Liu, W., “Adhesion Behaviors on Superhydrophobic Surfaces”, Chemical Communications, Vol. 50, pp. 3900-3913, 2014.
29. Koc, Y., De Mello, A., McHale, G., Newton, M., Roach, P., and Shirtcliffe, N., “Nano-scale Superhydrophobicity: Suppression of Protein Adsorption and Promotion of Flow-induced Detachment”, Lab on a Chip, Vol. 8, pp. 582-586, 2008.
30. Scopelliti, P. E., Borgonovo, A., Indrieri, M., Giorgetti, L., Bongiorno, G., Carbone, R., Podesta, A., and Milani, P., “The Effect of Surface Nanometre-scale Morphology on Protein Adsorption”, PloS One, Vol. 5, p. e11862, 2010.
31. Nurioglu, A. G., and Esteves, A. C. C., “Non-toxic, Non-biocide-release Antifouling Coatings Based on Molecular Structure Design for Marine Applications”, Journal of Materials Chemistry B, Vol. 3, pp. 6547-6570, 2015.

تحت نظارت وف ایرانی