ساخت و ارزیابی خواص مکانیکی و زیست‌فعالی داربست نانوساختار هاردیستونیت با استفاده از فضاساز

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

در سه دهه اخیر سرامیک‌های پایه کلسیم- سیلیکاتی به‌عنوان انتخاب مناسبی به‌دلیل زیست‌فعالی، زیست‌سازگاری و توانایی تشکیل استخوان مناسب جهت کاربرد در مهندسی بافت مورد توجه واقع شده‌اند. در حال حاضر هاردیستونیت به‌عنوان یکی از مواد سرامیکی زیست‌سازگار و زیست‌فعال برای کاربردهای پزشکی مورد استفاده قرار می‌گیرد. در این تحقیق، برای اولین بار پودر و داربست سه‌ بعدی هاردیستونیت با تخلخل‌های باز به‌ترتیب با روش سنتز آلیاژسازی مکانیکی و استفاده از فضاساز ساخته شدند. نانوهاردیستونیت خالص با استفاده از 10 ساعت آسیاکاری و سه ساعت عملیات حرارتی ثانویه در دمای 800 درجه سانتی‌گراد حاصل شد. اندازه بلورک‌های پودر و داربست هاردیستونیت به‌ترتیب 2±28 و 1±79 نانومتر اندازه‌گیری شد. نتایج نشان می‌دهد که داربست‌های نانوساختار هاردیستونیت به‌ترتیب با استحکام و مدول فشاری 02/0±35/0 و 21/0±49/10 مگاپاسکال، 1±81 درصد تخلخل و اندازه تخلخل در بازه 200-500 میکرومتر پس از سه ساعت عملیات حرارتی در دمای 1250 درجه سانتی‌گراد، با موفقیت سنتز شد. در حین عملیات حرارتی نمک سدیم کلرید(80 درصد وزنی، 300-420 میکرومتر)، به‌تدریج بخار شده و در داربست ایجاد تخلخل می‌کند. به‌منظور ارزیابی توانایی تشکیل آپاتیت روی داربست‌ها، از آزمون مایع شبیه‌ساز بدن (SBF) استفاده شد. با توجه به نتایج، تشکیل لایه آپاتیت روی سطح داربست می‌تواند به‌عنوان معیاری از زیست‌فعالی درنظر گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Evaluation of the Mechanical and Bioactivity Properties of a Nano Structure-hardystonite Scaffold by the Space Holder Method

نویسندگان [English]

  • S. Sadeghzade
  • R. Emadi
  • Sh. labbaf
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

In the recent three decades, Ca-Si-based ceramics have received great attention as an appropriate candidate for tissue engineering applications due to their remarkable bioactivity, biocompatibility, and good bone formation ability. Hardystonite is currently recognized as a bioactive and biocompatible bio-ceramic material for a range of medical applications. In the present study, for the first time, hardystonite powder and 3D hardystonite scaffold with interconnected porosity were produced using mechanical alloying synthesis and the space holder method, respectively. It was found that pure nano-crystalline hardystonite powder formation occurred following 10 h of milling and subsequent sintering at 800  C° for 3 h. The measured crystallite size of particles and the hardystonite scaffold was found to be 28 ± 2 and 79 ± 1 nm, respectively. The results also showed that nanostructured hardystonite scaffolds with the compressive strength and modulus of 0.35 ± 0.02 and 10.49 ± 0.21 MPa, the porosity of 81 ± 1% , and pores size range of 200–500 μm were successfully synthesized after sintering at 1250 °C for 3 h. During the sintering process, NaCl (80wt%, 300-420 µm), as the spacer agent, gradually evaporated from the system,producing porosity in the scaffold. Simulated body fluid (SBF) was used to evaluate the apatite formation ability of the scaffolds. The results showed that the formation of an apatite layer on the scaffold surface could be considered as a bioactivity criterion.

کلیدواژه‌ها [English]

  • Hardystonite
  • Scaffold
  • Bone tissue engineering
  • NaCl spacer
1. Burg, K. J. L., Porter, S., and Kellam, J. F., “Biomaterial Developments for Bone Tissue Engineering”, Biomaterials, Vol. 21, pp. 2347-2359, 2000.
2. Shirtliff, V. J., and Hench, L. L., “Bioactive Materials for Tissue Engineering Regeneration and Repair”, Journal of Materials Science, Vol. 38, pp. 4697-4707, 2003.
3. Roohani-Esfahani, S. I., Dunstan, C. R., Davies, B., Pearce, S., Williams, R., and Zreiqat, H., “Repairing a Critical-sized Bone Defect with Highly Porous Modified and Unmodified Baghdadite Scaffolds”, Acta Biomaterialia, Vol. 8, pp. 4162-4172, 2012.
4. Ghomi, H., Emadi, R., and HaghjooyeJavanmard, S., “Preparation of Nanostructure Bioactive Diopside Scaffolds for Bone Tissue Engineering by Two Near Net Shape Manufacturing Techniques”, Materials Letters, Vol. 167, pp. 157-160, 2016.
5. Sadeghzade, S., Emadi, R., and Ghomi, H., “Mechanical Alloying Synthesis of Forsterite-diopside Nanocomposite Powder for using in Tissue Engineering”, Ceramics-Silikáty, Vol. 59, pp. 1-5, 2015.
6. Hafezi, M., Nezafati, N., Nadernezhad, A., Ghazanfari, S. M. H., and Sepantamehr, M., “Bioinorganics in Bioactive Calcium Silicate Ceramics for Bone Tissue Repair: Bioactivity and Biological Properties”, Ceramic Science and Technology, Vol. 5, pp. 1-12, 2014.
7. Sadeghzade, S., Emadi, R., and Tavangarian, F., “Combustion Assisted Synthesis of Hardystonite Nanopowder”, Ceramic International, Vol. 42, pp. 14656-14660, 2016.
8. Wu, C., Ramaswamy, Y., and Zreiqat, H., “Porous Diopside (CaMgSi2O6) Scaffold: a Promising Bioactive Material for Bone Tissue Engineering”, Acta Biomaterialia, Vol. 6, pp. 2237-2245, 2010.
9. Wu, C., Chang, J., and Zhai, W., “A Novel Hardystonite Bioceramic: Preparation and Characteristics”, Ceramic International, Vol. 31, pp. 27-31, 2005.
10. Zreiqat, H., Ramaswamy, Y., Wu, C., Paschalidis, A., Lu, Z., Birke, O., Mcdonald, M., Little, D., and Dunstan, C. R., “The Incorporation of Strontium and Zinc Into a Calcium-Silicon Ceramic for Bone Tissue Engineering”, Biomaterials, Vol. 31, pp. 3175-3184, 2010.
11. Wang, G., Lu, Z., Dwarte, D., and Zreiqat, H., “Porous Scaffolds with Tailored Reactivity Modulate In-Vitro Osteoblast Responses”, Materials Science and Engineering C, Vol. 32, pp. 1818-1826, 2012.
12. Gheisari, H., Karamian, E., and Abdellahi, M., “A Novel Hydroxyapatite- Hardystonite Nanocomposite Ceramic”, Ceramics International, Vol. 41, pp. 5967-5975, 2015.
13. Ghomi, H., Jaberzadeh, M., and Fathi, M., “Novel Fabrication of Forsterite Scaffold with Improved Mechanical Properties”, Alloys and Compounds, Vol. 509, pp. 63-67, 2011.
14. Arifvianto, B., and Zhou, J., “Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: a Review”, Materials, Vol. 7, pp. 3588-3622, 2014.
15. Sadeghzade, S., Emadi, R., and Labbaf, S., “Hardystonite-diopside Nanocomposite Scaffolds for Bone Tissue Engineering Applications”, Materials Chemistry and Physics, Vol. 202, pp. 95-103, 2017.
16. Tavangarian, F., and Emadi, R., “Mechanochemical Synthesis of Single Phase Nonocrystalline Forsterite Powder”, International Journal of Modern Physics B, Vol. 24, pp. 343-350, 2010.
17. Askeland, D. R., The Science and Engineering of Materials, PWS Pub. Co., 1989.
18. Li, H., and Chang, J., “Fabrication and Characterization of Bioactive Wollastonite/PHBV Composite Scaffolds”, Biomaterials, Vol. 25, pp. 5473-5480, 2004.
19. Wu, C. T., Ramaswamy, Y., and Zreiqat, H., “Porous Diopside (CaMgSi2O6) Scaffold: a Promising Bioactive Material for Bone Tissue Engineering”, Acta Biomaterial, Vol. 6, pp. 2237-2245, 2010.
20. Sadeghzade, S., Shamoradi, F., Emadi, R., and Tavangarian, F., “Fabrication and Characterization of Baghdadite Nanostructured Scaffolds by Space Holder method”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 68, pp. 1-7, 2017.
21. Ghomi, H., Emadi, R., and Haghjo Javanmard, S., “Fabrication and Characterization of Nanostructure Diopside Scaffolds using the Space Holder Method: Effect of Different Space Holders and Compaction Pressures”, Materials and Design, Vol. 91, pp. 193-200, 2016.
22. Sadeghzade, F., Emadi, R., Tavangarian, F., and Naderi, M., “Fabrication and Evaluation of Silica-based Ceramic Scaffolds for Hard Tissue Engineering Applications”, Materials Science & Engineering C, Vol. 71, pp. 431-438, 2017.
23. Johnson, A. J. W., and Herschler, B. A., “A Review of the Mechanical Behavior of CaP and CaP/polymer Composites for Applications in Bone Replacement and Repair”, Acta Biomaterial, Vol. 7, pp. 16-30, 2011.
24. Gerhardt, L. C., and Boccaccini, A. R., “Bioactive Glass and Glass-ceramic Scaffolds for Bone Tissue Engineering”, Materials, Vol. 3, pp. 3867-3910, 2010.
25. Sadeghzade, S., Emadi, R., and Labbaf, S., “Formation Mechanism of Nano-hardystonite Powder Prepared by Mechanochemical Synthesis”, Advanced Powder Technology, Vol. 27, pp. 2238-2244, 2016.
26. Rana, D., Arulkumar, S., Vishwakarma, A., and Ramalingam, M., Considerations on Designing Scaffold for Tissue Engineering, pp. 133-148, In: Ramalingam, A. V. S. S., (Eds.), Stem Cell Biology and Tissue Engineering in Dental Sciences, Academic Press, Boston, 2015.
27. Shirtliff, V. J., and Hench, L. L., “Bioactive Materials for Tissue Engineering, Regeneration and Repair”, Journal of Materials Science, Vol. 38, pp. 4697-4707, 2003.
28. Bohner, M., and Lemaitre, J., “Can Bioactivity be Tested in Vitro with SBF Solution?”, Biomaterials, Vol. 30, pp. 2175-2179, 2009
29. Mirhadi, S. M., Tavangarian, F., and Emadi, R., “Synthesis, Characterization and Formation Mechanism of Single Phase Nanostructure Bredigite Powder”, Materials Science and Engineering C, Vol. 32, pp. 1818-1826, 2012.
30. Soundrapandian, C., Datta, S., Kundu, B., Basu, D., and Sa, B., “Porous Bioactive Glass Scaffolds for Local Drug Delivery in Osteomyelitis: Development and in Vitro Characterization”, American Association of Pharmaceutical Scientists, Vol. 11, pp. 1675-1683, 2010.
31. Tavangarian, F., and Emadi, R., “Nanostructure Effects on the Bioactivity of Forsterite Bioceramic”, Materials Letters, Vol. 65, pp. 740-743, 2011.

تحت نظارت وف ایرانی