1. Burg, K. J. L., Porter, S., and Kellam, J. F., “Biomaterial Developments for Bone Tissue Engineering”, Biomaterials, Vol. 21, pp. 2347-2359, 2000.
2. Shirtliff, V. J., and Hench, L. L., “Bioactive Materials for Tissue Engineering Regeneration and Repair”, Journal of Materials Science, Vol. 38, pp. 4697-4707, 2003.
3. Roohani-Esfahani, S. I., Dunstan, C. R., Davies, B., Pearce, S., Williams, R., and Zreiqat, H., “Repairing a Critical-sized Bone Defect with Highly Porous Modified and Unmodified Baghdadite Scaffolds”, Acta Biomaterialia, Vol. 8, pp. 4162-4172, 2012.
4. Ghomi, H., Emadi, R., and HaghjooyeJavanmard, S., “Preparation of Nanostructure Bioactive Diopside Scaffolds for Bone Tissue Engineering by Two Near Net Shape Manufacturing Techniques”, Materials Letters, Vol. 167, pp. 157-160, 2016.
5. Sadeghzade, S., Emadi, R., and Ghomi, H., “Mechanical Alloying Synthesis of Forsterite-diopside Nanocomposite Powder for using in Tissue Engineering”, Ceramics-Silikáty, Vol. 59, pp. 1-5, 2015.
6. Hafezi, M., Nezafati, N., Nadernezhad, A., Ghazanfari, S. M. H., and Sepantamehr, M., “Bioinorganics in Bioactive Calcium Silicate Ceramics for Bone Tissue Repair: Bioactivity and Biological Properties”, Ceramic Science and Technology, Vol. 5, pp. 1-12, 2014.
7. Sadeghzade, S., Emadi, R., and Tavangarian, F., “Combustion Assisted Synthesis of Hardystonite Nanopowder”, Ceramic International, Vol. 42, pp. 14656-14660, 2016.
8. Wu, C., Ramaswamy, Y., and Zreiqat, H., “Porous Diopside (CaMgSi2O6) Scaffold: a Promising Bioactive Material for Bone Tissue Engineering”, Acta Biomaterialia, Vol. 6, pp. 2237-2245, 2010.
9. Wu, C., Chang, J., and Zhai, W., “A Novel Hardystonite Bioceramic: Preparation and Characteristics”, Ceramic International, Vol. 31, pp. 27-31, 2005.
10. Zreiqat, H., Ramaswamy, Y., Wu, C., Paschalidis, A., Lu, Z., Birke, O., Mcdonald, M., Little, D., and Dunstan, C. R., “The Incorporation of Strontium and Zinc Into a Calcium-Silicon Ceramic for Bone Tissue Engineering”, Biomaterials, Vol. 31, pp. 3175-3184, 2010.
11. Wang, G., Lu, Z., Dwarte, D., and Zreiqat, H., “Porous Scaffolds with Tailored Reactivity Modulate In-Vitro Osteoblast Responses”, Materials Science and Engineering C, Vol. 32, pp. 1818-1826, 2012.
12. Gheisari, H., Karamian, E., and Abdellahi, M., “A Novel Hydroxyapatite- Hardystonite Nanocomposite Ceramic”, Ceramics International, Vol. 41, pp. 5967-5975, 2015.
13. Ghomi, H., Jaberzadeh, M., and Fathi, M., “Novel Fabrication of Forsterite Scaffold with Improved Mechanical Properties”, Alloys and Compounds, Vol. 509, pp. 63-67, 2011.
14. Arifvianto, B., and Zhou, J., “Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: a Review”, Materials, Vol. 7, pp. 3588-3622, 2014.
15. Sadeghzade, S., Emadi, R., and Labbaf, S., “Hardystonite-diopside Nanocomposite Scaffolds for Bone Tissue Engineering Applications”, Materials Chemistry and Physics, Vol. 202, pp. 95-103, 2017.
16. Tavangarian, F., and Emadi, R., “Mechanochemical Synthesis of Single Phase Nonocrystalline Forsterite Powder”, International Journal of Modern Physics B, Vol. 24, pp. 343-350, 2010.
17. Askeland, D. R., The Science and Engineering of Materials, PWS Pub. Co., 1989.
18. Li, H., and Chang, J., “Fabrication and Characterization of Bioactive Wollastonite/PHBV Composite Scaffolds”, Biomaterials, Vol. 25, pp. 5473-5480, 2004.
19. Wu, C. T., Ramaswamy, Y., and Zreiqat, H., “Porous Diopside (CaMgSi2O6) Scaffold: a Promising Bioactive Material for Bone Tissue Engineering”, Acta Biomaterial, Vol. 6, pp. 2237-2245, 2010.
20. Sadeghzade, S., Shamoradi, F., Emadi, R., and Tavangarian, F., “Fabrication and Characterization of Baghdadite Nanostructured Scaffolds by Space Holder method”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 68, pp. 1-7, 2017.
21. Ghomi, H., Emadi, R., and Haghjo Javanmard, S., “Fabrication and Characterization of Nanostructure Diopside Scaffolds using the Space Holder Method: Effect of Different Space Holders and Compaction Pressures”, Materials and Design, Vol. 91, pp. 193-200, 2016.
22. Sadeghzade, F., Emadi, R., Tavangarian, F., and Naderi, M., “Fabrication and Evaluation of Silica-based Ceramic Scaffolds for Hard Tissue Engineering Applications”, Materials Science & Engineering C, Vol. 71, pp. 431-438, 2017.
23. Johnson, A. J. W., and Herschler, B. A., “A Review of the Mechanical Behavior of CaP and CaP/polymer Composites for Applications in Bone Replacement and Repair”, Acta Biomaterial, Vol. 7, pp. 16-30, 2011.
24. Gerhardt, L. C., and Boccaccini, A. R., “Bioactive Glass and Glass-ceramic Scaffolds for Bone Tissue Engineering”, Materials, Vol. 3, pp. 3867-3910, 2010.
25. Sadeghzade, S., Emadi, R., and Labbaf, S., “Formation Mechanism of Nano-hardystonite Powder Prepared by Mechanochemical Synthesis”, Advanced Powder Technology, Vol. 27, pp. 2238-2244, 2016.
26. Rana, D., Arulkumar, S., Vishwakarma, A., and Ramalingam, M., Considerations on Designing Scaffold for Tissue Engineering, pp. 133-148, In: Ramalingam, A. V. S. S., (Eds.), Stem Cell Biology and Tissue Engineering in Dental Sciences, Academic Press, Boston, 2015.
27. Shirtliff, V. J., and Hench, L. L., “Bioactive Materials for Tissue Engineering, Regeneration and Repair”, Journal of Materials Science, Vol. 38, pp. 4697-4707, 2003.
28. Bohner, M., and Lemaitre, J., “Can Bioactivity be Tested in Vitro with SBF Solution?”, Biomaterials, Vol. 30, pp. 2175-2179, 2009
29. Mirhadi, S. M., Tavangarian, F., and Emadi, R., “Synthesis, Characterization and Formation Mechanism of Single Phase Nanostructure Bredigite Powder”, Materials Science and Engineering C, Vol. 32, pp. 1818-1826, 2012.
30. Soundrapandian, C., Datta, S., Kundu, B., Basu, D., and Sa, B., “Porous Bioactive Glass Scaffolds for Local Drug Delivery in Osteomyelitis: Development and in Vitro Characterization”, American Association of Pharmaceutical Scientists, Vol. 11, pp. 1675-1683, 2010.
31. Tavangarian, F., and Emadi, R., “Nanostructure Effects on the Bioactivity of Forsterite Bioceramic”, Materials Letters, Vol. 65, pp. 740-743, 2011.