تولید و مشخصه‌یابی کلسیم منیزیم سیلیکات نانو متخلخل و بررسی اثر دمای کلسیناسیون بر رفتار دارورسانی آن

نویسندگان

دانشگاه آزاد اسلامی واحد نجف آباد

چکیده

در این پژوهش، سنتز کلسیم منیزیم سیلیکات نانو‌ متخلخل به‌منظور بهبود خواص دارورسانی و رهایش دارو انجام و مورد مطالعه قرار گرفت. این سنتز توسط پیش ماده تترااتیل اورتوسیلیکات (TEOS) و فعال کننده سطحی ستیل تری‌متیل آمونیوم برومید (CTAB) در محیط بازی به روش سل- ژل انجام شده است و ترکیب تولید شده در دماهای 600 و 800 درجه سانتی‌گراد مورد عملیات حرارتی قرار گرفت. هدف از این پژوهش بررسی اثر دمای کلسیناسیون بر پتانسیل بارگذاری و رهایش داروی ایبوپروفن توسط ترکیب تولیدی است. محصول به‌دست آمده توسط روش‌های پراش پرتو ایکس (XRD)، جذب- واجذب نیتروژن، طیف‌سنجی فروسرخ (FTIR)، طیف‌سنجی فرابنفش (UV)، میکروسکوپی الکترونی عبوری (TEM) و میکروسکوپی الکترونی روبشی گسیل میدانی (FE-SEM) مورد مطالعه قرار گرفت. نتایج آزمون جذب- واجذب نیتروژن حاکی از مساحت سطحی در گستره 42 تا 140 مترمربع بر گرم است. رهایش دارو پس از 240 ساعت نشان داد که نمونه کلسینه شده در دمای 600 درجه سانتی‌گراد رهایش کندتری داشته است که دلیل آن اندازه کوچک‌تر حفرات و مساحت سطحی بیشتر نسبت به نمونه دیگر است. همچنین عناصر کلسیم و منیزیم باعث افزایش قابلیت بارگذاری و ایجاد بستر مناسب جهت رهایش آرام‌تر دارو شده است. این پژوهش نشان داد که کلسیم منیزیم سیلیکات نانو متخلخل قابلیت بارگذاری و رهایش داروی ایبوپروفن را داراست و می‌تواند به‌عنوان یک سامانه نوین دارورسانی در حوزه مهندسی بافت استخوان مورد استفاده قرار گیرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and Characterization of Nanoporous Calcium Magnesium Silicate and Assessment of the Calcination Temperature Effect on Its Drug Delivery Behavior

نویسندگان [English]

  • S. Ghadiri
  • A. Hassanzadeh-Tabrizi
Najafabad Branch, Islamic Azad University Najafabad
چکیده [English]

In this study, the synthesis of nano-porous calcium magnesium silicate was performed and studied to improve drug properties and drug release. This synthesis was carried out by using the tetraethyl ortho silicate precursor (TEOS) and the Cetyltrimethyl ammonium bromide surfactant (CTAB) in a sol-gel alkaline environment; and the product was heat treated at 600° C and 800° C temperatures. The purpose of this study is to investigate the effect of the calcination temperature on the potential for ibuprofen release by the production produced compound. The product was studied using X-ray diffraction patterns (XRD), Nitrogen adsorption / desorption, Fourier-transform infrared spectroscopy (FTIR), ultraviolet spectroscopy (UV) and Transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The results of Nitrogen absorption-desorption assay showed a surface area of 42-140 m2 /g The drug release after 240 hours showed that the calcite sample had a lower release at 600 ° C, temperature that which was is due to the smaller size of the cavities and the more surface area, as compared tothan the other specimens. Also, calcium and magnesium elements increased  the loading capacity, and createcreating a suitable substrate for for the slower drug release. Overall, This this study showed that nano-porous magnesium silicate calcium has had  the ability to load and release the ibuprofen and can could be, therefore, used as a modern drug delivery system in the bone tissue engineering field.
 

کلیدواژه‌ها [English]

  • Calcium magnesium silicate
  • Controlled release
  • CTAB surfactant
  • Calcination temperature
  • Ibupropen
1. Ahuja, G., and Pathak, K., “Porous Carriers for Controlled/modulated Drug Delivery”, Indian Journal Pharmaceutical Sciences, Vol. 71, pp. 559-607, 2009.
2. Mauli. A. C., Introduction to Biomaterial, Cambridge University Press, pp. 321-340, 2014.
3. Qu, F. Y., Zhu, G. S., Lin, H. M., Sun Zhang, D. L., and Li, S. G., “A Controlled Release of Ibuorofen by Systematically Tailoring the Morphology of Mesoporous Silica Materials”, Journal of Solid State Chemistry, Vol. 179, pp. 2027-2035, 2006.
4. Judith, A. B., “The Role of Calcium in Human Aging”, Loyola University Healthcare System, Vol. 4, pp. 1-8, 2015.
5. Wu, Z., Tang, T., Gue, H., Tang, S., Niu, Y., Zhang, J., and Zhang, W., “In Vitro Degradability, Bioactivity and Cell Responses to Mesoporous Magnesium Silicate for the Induction of Bone Regeneration”, Colloids and Surface B. Biointerfaces, Vol. 120, pp. 38-46, 2014.
6. Vallet-Regi, M., Del Real, R. P., and Ramila, A, “A New Property of MCM-41: Drug Delivery System”, Chemistry Materials, Vol. 13, pp. 308-311, 2001.
7. Horcajada, P., Ramila, A., Perez-Pariente, J., and Vallet-Regi, M., “Influence of Pore Size of MCM-41 Matrices on Drug Delivery Rate”, Microporous and Mesoporous Materials, Vol. 68, pp.105-109, 2004.
8. DeSousa, A., and Martins Barros deSousa, E., “Ordered Mesoporous Silica Carrier System Applied in Nanobiothecnology”, Brazilian Archives of Biology and Technology, Vol. 48, pp. 243-250, 2005.
9. Seshima, H., Hattori, M., Yoshinari, M., and Takemoto, Sh., “Control of Bisphosphonate Release using Hydroxyapatite Granules”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 78, pp. 215-221, 2006.
10. Hassanzadeh-Tabrizi, S. A., Bigham, A., and Rafienia, M., “Surfactant-assisted Sol-gel Synthesis of Forsterite Nanoparticles as a Novel Drug Delivery System”, Materials Science and Engineering: C, Vol. 58, pp. 737-741, 2016.
11. Tavakoli, H., Sarraf-Mamoory, R., and Zarei, A. R., “Solvothermal Synthesis of Copper Nanoparticles Loaded on Multi-wall Carbon Nanotubes as Catalyst for Thermal Decomposition of Ammonium Perchlorate”, Journal of Advanced Materials and Processing, Vol. 3, pp. 3-10, 2015.
12. Foroughi, F., Hassanzadeh-Tabrizi, S. A., and Bigham, A., “In Situ Microemulsion Synthesis of Hydroxyapatite-MgFe2O4 Nanocomposite as a Magnetic Drug delivery System”, Materials Science and Engineering: C, Vol. 68, pp. 774-779, 2016.
13. Bigham, A., Hassanzadeh-Tabrizi, S. A., Rafienia, M., and Salehi, H., “Ordered Mesoporous Magnesium Silicate with Uniform Nanochannels as a Drug Delivery System: The Effect of Calcination Temperature on Drug Delivery Rate”, Ceramics International, Vol. 42, pp. 17185-17191, 2016.
14. Izquierdo-Barba, I., Colilla, M., Manzano, M., and Vallet-Regi, M., “In Vitro Stability of SBA-15 under Physiological Conditions”, Microporous and Mesoporous Materials, Vol. 132, pp. 442-452, 2010.
15. Choudhary, R., Koppala, S., and Swamiappan, S., “Bioactivity Studies of Calcium Magnesium Silicate Prepared Fromeggshell Waste by Sol-gel Combustion Synthesis”, Journal of Asian Ceramic Societies, Vol. 3, pp. 173-177, 2015.
16. Jaroniec, M., and Krud, M., “Gas Adsorption Characterization of Ordered Organic-inorganic Nanocomposite Materials” Chemistry of Materials, Vol. 13, pp. 3169-3183, 2001.
17. Xia, W., and Chang, J., “Well-ordered Mesoporous Bioactive Glasses (MBG): a Promising Bioactive Drug Delivery System”, Journal of Controlled Release, Vol. 110, pp. 522-530, 2006.
18. Jansen, J. C., Shan, Z., Marchese, L., Zhou. W., Puild, N. V. D., and Maschmeyer, T., “A New Templating Method for Three-dimensional Mesopore Networks”, Chemical Communications., Vol. 8, pp. 713-714, 2001.
19. Shan, Z., “Incorporation of Nano-sized Zeolites Into a Mesoporous Matrix, TUD-1”, Studies in Surface Science and Catalysis, Vol. 141, pp. 613-640, 2002.
20. Ghadiri, S., Hassanzadeh-Tabrizi, S. A., and Bigham, A., “The Effect of Synthesis Medium on Structure and Drug Delivery Behavior of CTAB-assisted Sol-gel Derived Nanoporous Calcium-magnesium-silicate”, Journal of Sol-Gel Science and Technology, Vol. 83, pp. 229-236, 2017.
21. Vallet-Regi, M., “Bio-ceramics with Clinical Applications”, John Wiley & Sons Ltd., United Kingdom, pp. 343-359, 2014.
22. Lin, G., Jinpeng, W., Bo, R., and Jihong, S. L., “Influence of Different Structured Channels of Mesoporous Silicate on the Controlled Ibuprofen Delivery”, Materials Chemistry and Physics, Vol. 135, pp. 786-797, 2012.
23. Manzano, M., Arean, C. O., Aina, M., Balas, F., Cauda, V., Collila, M., Delgado, M. R., Vallet-Regi, M., “Studies on MCM-41 Mesoporouse Silica for Drug Delivery: Effect of Particle Morphology and Amine Functionalization”, Chemical Engineering Journal, Vol. 137, pp. 7-31, 2008.
24. Gao, L., Sun, J., Zhang, L., Wang, J., and Ren, B., “Influence of Different Structured Channels of Mesoporous Silicate on the Controlled Ibuprofen Delivery”, Materials Chemistry Physics, Vol. 135, pp. 786-797, 2012.
25. Wu, J., Zhu, Y. J., Cao, S. W., and Chen, F., “Hierachically Nanostructured Mesoporous Spheres of Calcium Silicate Hydrate: Surfactant-free Sonochemical Synthesis and Drug-delivery System with Ultra High Drug-loading Capacity”, Advanced Materials, Vol. 22, pp. 749-753, 2010.
26. Shen, S., Chow, P. S., Chen, F., Tan, R. B., “Submicron Particles of SBA-15 Modified with MgO as Carriers for Controlled Drug Deliver”, Chem Pharm Bull, Vol. 55, pp. 985-991, 2007.
27. Liu, Z., Mustian, M., and Cortés-Concepción, J. A., “Effect of Basic Properties of MgO on the Heterogeneous Synthesis of Flavanone”, Applied Catalysis A, Vol. 302, pp. 232-236, 2006.
28. Wei, Y. L., Zhu, J. H., and Cao, Y., “Attemps on Preparing Mesoporous Basic Material MgO/SBA-15”, Studies in Surface Science and Catalysis, Vol. 154, pp. 878-885, 2004.
29. Khamsehashari, N., Hassanzadeh-Tabrizi, S. A., and Bigham, A., “Effects of Strontium Adding on the Drug Delivery Behavior of Silica Nanoparticles Synthesized by P123-assisted Sol-gel Method”, Materials Chemistry and Physics, Vol. 205, pp. 283-291, 2017.

تحت نظارت وف ایرانی