بررسی جذب سطحی در نانوکامپوزیت‌های گرافن/ اکسید‌گرافن- پلیمرهای تقویت ‌شده به‌روش شبیه‌سازی دینامیک مولکولی واکنشی

نویسندگان

1 1. دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران

2 2. گروه فیزیک، واحد قزوین، دانشگاه آزاد اسلامی قزوین، قزوین، ایران

چکیده

چکیده- در این پژوهش، میزان جذب سطحی پلیمرهای مزدوج بر گرافن/ اکسید گرافن به‌روش شبیه‌سازی دینامیک مولکولی با میدان نیروی واکنشی مورد تحقیق قرار گرفت. پلیمرها عبارتند از پلی‌(3- هگزیل تیوفن) و پلی‌(فنوتیازین وینیلن)- پلی‌تیوفن. طول و عرض ورقه گرافنی به‌ترتیب برابر با 196/95 آنگستروم و 164/54 آنگستروم است. ورقه‌های اکسیدگرافن با درصدهای اکسیدشدگی متفاوت درنظر گرفته شدند. نتایج شبیه‌‌سازی دینامیک مولکولی میزان جذب سطحی بیشتری را روی ورقه‌های اکسید گرافن نسبت به ورقه گرافن نشان دادند؛ علاوه بر این پلی‌(فنوتیازین وینیلن)- پلی‌تیوفن میزان جذب سطحی بیشتری از پلی‌(3- هگزیل تیوفن) در بررسی با هر دو گروه عاملی هیدروکسی و اپوکسی نشان داده است. همچنین، برخی خواص ساختاری پلیمرها مانند شعاع چرخشی پلیمر و تابع توزیع شعاعی، در محل‌های واکنشی محاسبه شدند.

کلیدواژه‌ها


عنوان مقاله [English]

A study on the Adsorption of Graphene/Graphene Oxide–reinforced Polymer ‎Nanocomposites using Reactive Molecular Dynamics

نویسندگان [English]

  • G. Pishevarz 1
  • H. Erfan Niya 1
  • E. Zaminpayma 2
1 1. Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
2 2. Department of Physics, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
چکیده [English]

Abstract: In this work, the amounts of the adsorption of conjugated polymers onto graphene/ graphene oxide were examined by reactive force-field molecular dynamics simulation. The polymers were poly(3-hexylthiophene) (P3HT) and poly(phenothiazine vinylene-polythiophene)(PTZV-PT). The length and width of the graphene sheet were 95.19 Å and 54.16 Å, respectively. The graphene oxide sheets with different oxidation percentages were considered. The molecular dynamics simulation results demonstrated a higher amount of adsorption onto graphene oxide sheets in comparison to graphene; furthermore, poly(phenothiazine vinylene-polythiophene) revealed a larger amount of adsorption in comparison with poly(3-hexylthiophene) in both functionalized groups of hydroxyl and epoxy. Also, some structural properties of polymers, such as radius of gyration of polymer and radial distribution function, were calculated at different reactive sites.

کلیدواژه‌ها [English]

  • adsorption
  • graphene
  • graphene oxide
  • Conjugated polymer
  • molecular dynamics
1. Kim, H., Abdala, A. A., and Macosko, C. W., “Graphene / polymer Nanocomposites”, Macromolecules, Vol. 43, pp. 6515-6530, 2010.
2. Chirvase, D., Chirvase, D., Parisi, J., Hummelen, J. C., and Dyakonov, V., “Influence of Nanomorphology on the Photovoltaic Action of Polymer-fullerene Composites”, Nanotechnology, Vol. 15, p. 1317, 2004.
3. Rusanov, A., “Thermodynamics of Graphene”, Surface Science Reports, Vol. 69, pp. 296-324, 2014.
4. Nika, D. L., and Balandin, A. A., “Two-dimensional Phonon Transport in Graphene”, Journal of Physics: Condensed Matter, Vol. 24, p. 233203, 2012.
5. Jiang, J. -W., Wang, J.- S., and Li, B., “Young’s Modulus of Graphene: a Molecular Dynamics Study”, Physical Review B, Vol. 80, p. 113405, 2009.
6. Du, J., and Cheng, H. M., “The Fabrication, Properties, and uses of Graphene/polymer Composites”, Macromolecular Chemistry and Physics, Vol. 213, pp. 1060-1077, 2012.
7. Liu, Z., Liu, Q., Huang, Y., Ma, Y., Yin, S., Zhang, X., Sun, W., and Chen, Y., “Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene”, Advanced Materials, Vol. 20, pp. 3924-3930, 2008.
8. Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S., “The Chemistry of Graphene Oxide”, Chemical Society Reviews, Vol. 39, pp. 228-240, 2010.
9. Fang, M., Wang, K., Lu, H., Yang, Y., and Nutt, S., “Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites”, Journal of Materials Chemistry, Vol. 19, pp. 7098-7105, 2009.
10. Chua, C. K., and Pumera, M., “Covalent Chemistry on Graphene”, Chemical Society Reviews, Vol. 42, pp. 3222-3233, 2013.
11. Xu, L., and Yang, X., “Molecular Dynamics Simulation of Adsorption of Pyrene–polyethylene Glycol Onto Graphene”, Journal of Colloid and Interface Science, Vol. 418, pp. 66-73, 2014.
12. Bkakri, R., Kusmartseva, O. E., Kusmartsev, F., Song, M., and Bouazizi, A “Degree of Phase Separation Effects on the Charge Transfer Properties of P3HT: Graphene Nanocomposites”, Journal of Luminescence, Vol. 161, pp. 264-270, 2015.
13. Teng, C. -C., Ma, C.-C. M., Lu, C.-H., Yang, S.-Y., Lee, S.-H., Hsiao, M.-C., Yen, M.-Y., Chiou, K.-C., and Lee, T.-M., “Thermal Conductivity and Structure of Non-covalent Functionalized Graphene/epoxy Composites”, Carbon, Vol. 49, pp. 5107-5116, 2011.
14. Wang, M., Lai, Z. B., Galpaya, D., Yan, C., Hu, N., and Zhou, L., “Atomistic Simulation of Surface Functionalization on the Interfacial Properties of Graphene-polymer Nanocomposites”, Journal of Applied Physics, Vol. 115, p. 123520, 2014.
15. Nikkhah, S. J., Moghbeli, M., and Hashemianzadeh, S., “Investigation of the Interface Between Polyethylene and Functionalized Graphene: A Computer Simulation Study”, Current Applied Physics, Vol. 15, pp. 1188-1199, 2015.
16. Compton, O. C., Cranford, S. W., Putz, K. W., An, Z., Brinson, L. C., Buehler, M. J., and Nguyen, S. T., “Tuning the Mechanical Properties of Graphene Oxide Paper and Its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding”, Acs Nano, Vol. 6, pp. 2008-2019, 2012.
17. Esmaeili, R., and Dashtbayazi, M. R., “Simulation of Mechanical Properties of Al-SiC Nanocomposite using Molecular Dynamics Method”, Journal of Advanced Materials in Engineering (Esteghlal), Vol. 32, No. 2, pp. 43-54, 2013.
18. Chunder, A., Liu, J., and Zhai, L., “Reduced Graphene Oxide/Poly (3‐hexylthiophene) Supramolecular Composites”, Macromolecular Rapid Communications, Vol. 31, pp. 380-384, 2010.
19. Kim, Y., and Lim, E., “Development of Polymer Acceptors for Organic Photovoltaic Cells”, Polymers, Vol. 6, pp. 382-407, 2014.
20. Bell, J. T., and Mola, G. T., “Improved Charge Transport in P3HT: PCBM Bulk Heterojunction PV Cell under Ambient Environment”, Physica B: Condensed Matter, Vol. 437, pp. 63-66, 2014.
21. Boukhvalov, D. W., and Katsnelson, M. I., “Modeling of Graphite Oxide”, Journal of the American Chemical Society, Vol. 130, pp. 10697-10701, 2008.
22. Mattsson, T. R., Lane, J. M. D., Cochrane, K. R., Desjarlais, M. P., Thompson, A. P., Pierce, F., and Grest, G. S. “First-principles and Classical Molecular Dynamics Simulation of Shocked Polymers”, Physical Review B, Vol. 81, p. 054103, 2010.
23. Tongyan, P., Yang, L., and Zhaoyang, W., “Development of an atomistic-based chemophysical environment for modelling asphalt oxidation”, Polymer degradation and stability, Vol. 97, pp. 2331-2339, 2012.
24. Liu, F., et al., “Investigation of Interfacial Mechanical Properties of Graphene-polymer Nanocomposites”, Molecular Simulation, Vol. 42, pp. 1165-1170, 2016.
25. Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K., and Ni, Z., “Atomistic Simulations of Mechanical Properties of Graphene Nanoribbons”, Physics Letters A, Vol. 373, pp. 3359-3362, 2009.
26. Chen, S. A., and Ni, J. M., “Structure/properties of Conjugated Conductive Polymers. 1. Neutral poly (3-alkythiophene) s”, Macromolecules, Vol. 25, pp. 6081-6089, 1992.
27. Yang, L., Feng, J. -K., and Ren, A. -M., “Theoretical Study on Electronic Structure and Optical Properties of Phenothiazine-containing Conjugated Oligomers and Polymers”, The Journal of Organic Chemistry, Vol. 70, pp. 5987-5996, 2005.
28. Huang, D. M., Faller, R., Do, K., and Moulé, A. J., “Coarse-grained Computer Simulations of Polymer/fullerene Bulk Heterojunctions for Organic Photovoltaic Applications”, Journal of Chemical Theory and Computation, Vol. 6, pp. 526-537, 2009.
29. Yazawa, K., Inoue, Y., Yamamoto, T., and Asakawa, N., “Twist Glass Transition in Regioregulated Poly (3-alkylthiophene)”, Physical Review B, Vol. 74, p. 094204, 2006.
30. Nayebi, P., and Zaminpayma, E., “A Molecular Dynamic Simulation Study of Mechanical Properties of Graphene-polythiophene Composite with Reax Force Field ”,Physics Letters A, Vol. 380, pp. 628-633, 2016.
31. Bratsch, S. G., “A Group Electronegativity Method with Pauling Units”. Journal of Chemical Education, Vol. 62, p. 101, 1985.
32. Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., and Shenoy, V. B., “Structural Evolution During the Reduction of Chemically Derived Graphene Oxide”, Nature Chemistry, Vol. 2, pp. 581-587, 2010.
33. Abolfath, R. M., and Cho, K., “Computational Studies for Reduced Graphene Oxide in Hydrogen-rich Environment”, The Journal of Physical Chemistry A, Vol. 116, pp. 1820-1827, 2012.
34. Coluci, V. R., Martinez, D. S. f. T., Honório, J. G., de Faria, A. i. F., Morales, D. A., Skaf, M. S., Alves, O. L., and Umbuzeiro, G. A. “Noncovalent Interaction with Graphene Oxide: the Crucial Role of Oxidative Debris”, The Journal of Physical Chemistry C, Vol. 118, pp. 2187-2193, 2014.
35. Medhekar, N. V., Ramasubramaniam, A., Ruoff, R. S., and Shenoy, V. B., “Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties”, Acs Nano, Vol. 4, pp. 2300-2306, 2010.
36. Abolfath, R. M., Van Duin, A., and Brabec, T., “Reactive Molecular Dynamics Study on the First Steps of DNA Damage by Free Hydroxyl Radicals”, The Journal of Physical Chemistry A, Vol. 115, pp. 11045-11049, 2011.
37. Terrones, M., Martín, O., González, M., Pozuelo, J., Serrano, B., Cabanelas, J. C., Vega‐Díaz, S. M., and Baselga, J., “Interphases in Graphene Polymer‐based Nanocomposites: Achievements and Challenges”, Advanced Materials, Vol. 23, pp. 5302-5310, 2011.
38. Bourlinos, A. B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., and Dékány, I. “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids”, Langmuir, Vol. 19, pp. 6050-6055, 2003.
39. Denis, P. A., and Iribarne, F., “Thiophene Adsorption on Single wall Carbon Nanotubes and Graphene”, Journal of Molecular Structure: THEOCHEM, Vol. 957, pp. 114-119, 2010.
40. Wu, C. and Xu, W., “Atomistic Molecular Simulations of Structure and Dynamics of Crosslinked Epoxy Resin”, Polymer, Vol. 48, pp. 5802-5812, 2007.
41. Batsanov, S., “Van der Waals Radii of Elements”, Inorganic Materials, Vol. 37, pp. 871-885, 2001.
42. Mohammadi, M. and Davoodi, J., “The Glass Transition Temperature of PMMA: A Molecular Dynamics Study and Comparison of Various Determination Methods”, European Polymer Journal, Vol. 91, pp. 121-133, 2017.
43. González-Rodríguez, D., and Schenning, A. P., “Hydrogen-bonded Supramolecular π-functional Materials”, Chemistry of Materials, Vol. 23, pp. 310-325, 2010.

تحت نظارت وف ایرانی