بهینه‌سازی فرایند انحلال انتخابی لیتیم از باتری لیتیم- یون مستعمل توسط اگزالیک اسید با به‌کارگیری روش رویه پاسخ

نویسندگان

1 1- آزمایشگاه فرایندهای نوین استخراج فلزات و بازیافت، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

2 2- دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

3 3- گروه باتری و سنسور، مرکز تحقیقات مواد و انرژی

چکیده

در این پژوهش، بازگردانی باتری لیتیم- یون از نوع LiNixMnyCozO2 با هدف بازیابی لیتیم از کاتد باتری، مورد آزمایش قرار گرفته است. پس از دشارژ و پیاده‌سازی اجزای باتری، کاتد با استفاده از یک خردکن تا ابعاد زیر پنج میلی‌متر ریز شد. سپس آلومینیوم محتوی با انحلال در محلول سدیم هیدروکسید 5/2 مولار تحت شرایط دمای محیط و زمان دو ساعت به‌طور انتخابی از ماده کاتدی حذف شد. در مرحله بعد انحلال انتخابی لیتیم از ماده کاتدی آلومینیومزدایی شده توسط اگزالیک اسید با استفاده از روش رویه پاسخ (طرح مرکب مرکزی) بررسی شد. سه پارامتر زمان (100-35 دقیقه)، دما (70-40 درجه سانتی‌گراد) و غلظت اگزالیک اسید (2/1-5/0 مولار) به‌عنوان متغیرهای کنترل شده و درصد بازیابی لیتیم و غلظت منگنز در محلول به‌عنوان متغیرهای پاسخ انتخاب شدند. درنهایت با تجزیه و تحلیل آماری نتایج و مدل های تعیین شده، شرایط بهینه (زمان 122 دقیقه، دمای 70 درجه سانتی‌گراد و غلظت اگزالیک اسید 1/1 مولار) پیش بینی شد و تحت این شرایط، بازیابی لیتیم حدود 95 درصد و منگنز حل‌شده به میزان حدود 110 میلی‌گرم بر لیتر به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of the Selective Dissolution of Li from the Spent Li-ion Batteries using Oxalic Acid by a Response Surface Methodology

نویسندگان [English]

  • H. Mirzaaei ghasabe 1
  • A. Zakeri 1
  • Sh. Mirdamadi 2
  • M. Ghorbanzadeh 3
1 1. Metal Extraction Research Laboratory, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.
2 2. School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.
3 3. Battery and Sensor Group, Materials and Energy Research Center.
چکیده [English]

In this study, the recovery of lithium from the cathode of the spent Li-ion batteries of the LiNixMnyCozO2 type was investigated. After complete discharging and dismantling, the cathodic section was cut and its aluminum content was selectively dissolved in 2.5 M NaOH solution at room temperature for 2 hr. In the next step, selective dissolution of lithium by oxalic acid from the de-aluminized cathode material was investigated and optimized using the response surface methodology of  the central composite design. The effect of three parameters of time (35-100 min), temperature (40-70 °C), and oxalic acid  concentration (0.5-1.2 M) on the lithium recovery percentage and manganese concentration was studied as the response variables. According to the statistical analysis of the results and the developed models, an optimum condition (T = 70 °C, t = 122 min and oxalic acid concentration of 1.1 M) was suggested and verified experimentally, resulting in the lithium recovery of about 95% and Mn2+ concentration of about 110 mg/L.

کلیدواژه‌ها [English]

  • Recycling
  • Spent Li-ion battery
  • Selective dissolution
  • design of experiments
  • Oxalic Acid
1. Chagnes, A., and Pospiech, B., “A Brief Review on Hydrometallurgical Technologies for Recycling Spent Lithium-ion Batteries”, Journal of Chemical Technology & Biotechnology, Vol. 88, pp. 1191-1199, 2013.
2. Zeng, X., Li, J., and Singh, N., “Recycling of Spent Lithium-ion Battery: A Critical Review”, Critical Reviews in Environmental Science and Technology, Vol. 44, pp. 1129-1165, 2014.
3. Zeng, X., Li, J., and Liu, L., “Solving Spent Lithium-ion Battery Problems in China: Opportunities and Challenges”, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1759-1767, 2015.
4. Xu, J., Thomas, H. R., Francis, R.W., Lum, K.R., Wang, J., and Liang, B., “A Review of Processes and Technologies for the Recycling of Lithium-ion Secondary Batteries”, Journal of Power Sources, Vol. 177, pp. 512-527, 2008.
5. Freitas, M. B. J. G., Celante, V. G., and Pietre, M. K., “Electrochemical Recovery of Cobalt and Copper from Spent Li-ion Batteries as Multilayer Deposits”, Journal of Power Sources, Vol. 195, pp. 3309-3315, 2010.
6. Zhang, X., Cao, H., Xie, Y., Ning, P., An, H., and You, H., “A Closed-loop Process for Recycling LiNi1/3Co1/3Mn1/3O2 from the Cathode Scraps of Lithium-ion Batteries: Process Optimization and Kinetics Analysis”, Separation and Purification Technology, Vol. 150, pp. 186-195, 2015.
7. Xin, Y., Guo, X., Chen, S., Wang, J., Wu, F., and Xin, B., “Bioleaching of Valuable Metals Li , Co , Ni and Mn from Spent Electric Vehicle Li-ion Batteries for the Purpose of Recovery”, Journal of Cleaner Production, Vol. 116, pp. 249-258, 2016.
8. Perkel, J. M., “The Trouble with Lithium Implications of Future PHEV Production for Lithium Demand”, Nature, Vol. 521, pp. 111-112, 2015.
9. Guo, Y., Li, F., Zhu, H., Li, G., Huang, J., and He, W., “Leaching Lithium from the Anode Electrode Materials of Spent Lithium-ion Batteries by Hydrochloric Acid ( HCl )”, Waste Management, Vol. 51, p. 186, 2015.
10. Joo, S., Oh, C., Wang, J., Senanayake, G., and Myung, S., “Hydrometallurgy Selective Extraction and Separation of Nickel from Cobalt , Manganese and Lithium in Pre-treated Leach Liquors of Ternary Cathode Material of Spent Lithium-ion Batteries using Synergism Caused by Versatic 10 Acid and LIX 84-I”, Hydrometallurgy, Vol. 159, pp. 65-74, 2016.
11. Ferreira, D. A., Prados, L. M. Z., Majuste, D., and Mansur, M. B., “Hydrometallurgical Separation of Aluminium, Cobalt, Copper and Lithium from Spent Li-ion Batteries”, Journal of Power Sources, Vol. 187, pp. 238-246, 2009.
12. Sohn, J. S., Shin, S. M., Yang, D. H., Kim, S. K., and Lee, C. K., “Comparison of Two Acidic Leaching Processes for Selecting the Effective Recycle Process of Spent Lithium ion Battery”, Geosystem Engineering, Vol. 9, pp. 1-6, 2006.
13. Li, J., Wang, G., and Xu, Z., “Environmentally-friendly Oxygen-free Roasting /Wet Magnetic Separation Technology for in Situ Recycling Cobalt , Lithium Carbonate and Graphite from Spent LiCoO2 /Graphite Lithium Batteries”, Journal of Hazardous Materials, Vol. 302, pp. 97-104, 2016.
14. Joulié, M., Laucournet, R., and Billy, E., “Hydrometallurgical Process for the Recovery of High Value Metals from Spent Lithium Nickel Cobalt Aluminum Oxide Based Lithium-ion Batteries”, Journal of Power Sources, Vol. 247, pp. 551-555, 2014.
15. Sun, L., and Qiu, K., “Organic Oxalate as Leachant and Precipitant for the Recovery of Valuable Metals from Spent Lithium-ion Batteries”, Waste Management, Vol. 32, pp. 1575-1582, 2012.
16. Sun, C., Xu, L., Chen, X., Qiu, T., and Zhou, T., “Sustainable Recovery of Valuable Metals from Spent Lithium-ion Batteries using DL-malic Acid: Leaching and Kinetics Aspect”, Waste Management & Research, Vol. 36, pp. 113-120, 2018.
17. Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F., and Amine, K., “Succinic Acid-based Leaching System: A Sustainable Process for Recovery of Valuable Metals from Spent Li-ion Batteries”, Journal of Power Sources, Vol. 282, pp. 544-551, 2015.
18. Golmohammadzadeh, R., Rashchi, F., and Vahidi, E., “Recovery of Lithium and Cobalt from Spent Lithium-ion Batteries using Organic Acids: Process Optimization and Kinetic Aspects”, Waste Management, Vol. 64, pp. 244-254, 2017.
19. Chen, X., Fan, B., Xu, L., Zhou, T., and Kong, J., “An Atom-economic Process for the Recovery of High Value-added Metals from Spent Lithium-ion Batteries”, Journal of Cleaner Production, Vol. 112, pp. 3562-3570, 2016.
20. Zeng, X., Li, J., and Shen, B., “Novel Approach to Recover Cobalt and Lithium from Spent Lithium-ion Battery using Oxalic Acid”, Journal of Hazardous Materials, Vol. 295, pp. 112-118, 2015.
21. Joo, S. H., Shin, D., Oh, C., Wang, J. P., and Shin, S. M., “Extraction of Manganese by Alkyl Monocarboxylic Acid in a Mixed Extractant from a Leaching Solution of Spent Lithium-ion Battery Ternary Cathodic Material”, Journal of Power Sources, Vol. 305, pp. 175-181, 2016.
22. Perry, D. L., Handbook of Inorganic Compounds, 2nd ed., CRC, New York, 2010.
23. Yoshio, M., Brodd, R. J., and Kozawa, A., Lithium-Ion Batteries, Springer, New York, p. 10, 2009.

تحت نظارت وف ایرانی