ساخت داربست‌های لایه‎‌به‌لایه نانو‌لیفی تهیه شده از پلی‌کاپرولاکتون و پلیمرهای آب‌دوست و بتا تری‌کلسیم فسفات برای مهندسی بافت

نویسندگان

1 1. دانشکده فنی، گروه مهندسی نساجی، دانشگاه گیلان

2 2. گروه آناتومی، دانشکده پزشکی، دانشگاه علوم پزشکی گیلان، رشت، ایران

چکیده

در این پژوهش با استفاده از پلیمرهای زیست‌تخریب‌پذیر، داربست‌های نانو‌لیفی از الکتروریسی دو نازل شامل پلی‌کاپرولاکتون، پلی‌وینیل ‌پیرولیدون و پلی‌کاپرولاکتون، پلی‌وینیل­الکل و بتا تری‌کلسیم فسفات به‌طور متناوب و لایه‌به‌لایه تولید شد. بعد از تهیه داربست، از آزمون‌های میکروسکوپ الکترونی روبشی ((SEM، تورم، تخلخل، خواص مکانیکی و ارزیابی رفتار زیست‌تخریب‌پذیری در محلول نمک فسفات با خاصیت بافری، استفاده شد که نتایج آزمون‌ها زیست‌فعالی و خواص مکانیکی مناسب داربست لایه‌به‌لایه را تأیید می‌کند. مقادیر جذب آب با افزودن پلیمرهای آب‌دوست افزایش پیدا می‌کند و در داربست لایه‌به‌لایه به 214±811 درصد می‌رسد که اختلاف معناداری نسبت به پلی‌کاپرولاکتون خالص دارد. آزمون سنجش سمیت سلولی (MTT) روی داربست لایه‌به‌لایه بعد از گذشت 3، 5 و7 روز کشت سلول‌های بنیادی مغز استخوان موش صحرایی (rMSC) درصد بقای سلولی بالای 80 درصد را نشان می‌دهد و ریخت‌شناسی سلول‌ها روی داربست نشان‌دهنده قابلیت زیست‌سازگاری مطلوب سلول­ها روی داربست است.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering

نویسندگان [English]

  • M. Sohrabi 1
  • M. Abbasi 1
  • M. M Ansar 2
1 1. Faculty of Engineering, Department of Textile Engineering, University of Guilan, Gilan, Iran.
2 2. Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
چکیده [English]

In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, mechanical properties and biodegradability behavior in buffered saline phosphate solution were  studied. The results confirmed the bioactivity  and suitable mechanical properties of the layer-by-layer scaffold. The swelling increase with the addition of hydrophilic polymers and reache 811 ± 214 % in the layer-by-layer scaffold, which reveald a significant difference compared to pure PCL. The MTT test on the layer-by-layer scaffold, after 3, 5 and 7 days of rats bone marrow stem cells (rMSC) culture, showed the cell viability of above 80% moreover, cells morphology on the scafold indicated the optimal compatibility of  cells on the scaffold.

کلیدواژه‌ها [English]

  • Scaffold
  • Layer- by -layer electrospinning
  • Poly(ε-caprolactone)
  • β-Tricalcium phosphate
  • Tissue engineering
1. Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., and Xiao, Y., “Copper-containing Mesoporous Bioactive Glass Scaffolds with Multifunctional Properties of Angiogenesis Capacity, Osteostimulation and Antibacterial Activity”, Biomaterials, Vol. 34, pp. 422-433, 2013.
2. Bi, L., Rahaman, M. N., Day, D. E., Brown, Z., Samujh, C., Liu, X., Mohammadkhah, A., Dusevich, V., Eick, J. D., and Bonewald, L. F., “Effect of Bioactive Borate Glass Microstructure on Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in a Rat Calvarial Defect Model”, Acta Biomaterialia, Vol. 9, No. 8, pp. 8015-8026, 2013.
3. Zhao, S., Zhang, J., Zhu, M., Zhang, Y., Liu, Z., Tao, C., Zhu, Y., and Zhang, C., “Three-dimensional Printed Strontium-containing Mesoporous Bioactive Glass Scaffolds for Repairing Rat Critical-sized Calvarial Defects”, Acta Biomaterialia, Vol. 12, pp. 270-280, 2015.
4. Erol, M., Özyuğuran, A., Özarpat, Ö., and Küçükbayrak, S., “3D Composite Scaffolds using Strontium Containing Bioactive Glasses”, Journal of the European Ceramic Society, Vol. 32, No. 11, pp. 2747-2755, 2012.
5. Yunos, D. M., Ahmad, Z., and Boccaccini, A. R., “Fabrication and Characterization of Electrospun Poly‐DL‐lactide (PDLLA) Fibrous Coatings on 45S5 Bioglass® Substrates for Bone Tissue Engineering Applications”, Journal of Chemical Technology & Biotechnology, Vol. 85, No. 6, pp.768-774, 2010.
6. Lin, H. M., Lin, Y. H., and Hsu, F. Y., “Preparation and Characterization of Mesoporous Bioactive Glass/Polycaprolactone Nanofibrous Matrix for Bone Tissues Engineering”, Journal of Materials Science: Materials in Medicine, Vol. 23, No. 11, pp. 2619-2630, 2012.
7. Gao, C., Gao, Q., Li, Y., Rahaman, M. N., Teramoto, A., and Abe, K., “In Vitro Evaluation of Electrospun Gelatin‐bioactive Glass Hybrid Scaffolds for Bone Regeneration”, Journal of Applied Polymer Science, Vol. 127, No. 4, pp. 2588-2599, 2013.
8. Liu, X., Smith, L. A., Hu, J., and Ma, P. X., “Biomimetic Nanofibrous Gelatin/Apatite Composite Scaffolds for Bone Tissue Engineering”, Biomaterials, Vol. 30, No. 12, pp. 2252-2258, 2009.
9. Rajzer, I., Grzybowska-Pietras, J., and Janicki, J., “Fabrication of Bioactive Carbon Nonwovens for Bone Tissue Regeneration”, Fibres & Textiles in Eastern Europe, Vol. 1, No. 84, pp. 66-72, 2011.
10. Xie, J., Blough, E. R., and Wang, C. H., “Submicron Bioactive Glass Tubes for Bone Tissue Engineering”, Acta Biomaterialia, Vol. 8, No. 2, pp. 811-819, 2012.
11. Gómez-Lizárraga, K. K., Flores-Morales, C., Del Prado-Audelo, M. L., Álvarez-Pérez, M. A., Piña-Barba, M. C., and Escobedo, C., “Polycaprolactone and Polycaprolactone/Ceramic-based 3D-bioplotted Porous Scaffolds for Bone Regeneration: A Comparative Study”, Materials Science and Engineering: C, Vol. 79, pp. 326-335, 2017.
12. Ghorbani, F. M., Kaffashi, B., Shokrollahi, P., Akhlaghi, S., and Hedenqvist, M. S., “Effect of Hydroxyapatite Nano-particles on Morphology, Rheology and Thermal Behavior of Poly (Caprolactone)/Chitosan Blends”, Materials Science and Engineering: C, Vol. 59, pp. 980-989, 2016.
13. Yang, F., Wolke, J. G. C., and Jansen, J. A., “Biomimetic Calcium Phosphate Coating on Electrospun poly (ɛ-Caprolactone) Scaffolds for Bone Tissue Engineering”, Chemical Engineering Journal, Vol. 137, No. 1, pp. 154-161, 2008.
14. Kim, G-M., Kim, H. T., Le, S. M., Giannitelli, Y. J. L., Alberto, R., and Marcella T., “Electrospinning of PCL/PVP Blends for Tissue Engineering Scaffolds”, Journal of Materials Science: Materials in Medicine, Vol. 24, No. 6 , pp. 1425-1442, 2013.
15. Kim G-M., Le, K. H., Giannitelli, S. M., Lee, Y. J., Rainer, A., and Trombetta, M., “An Improved Hydrophilicity via Electrospinning for Enhanced Cell Attachment and Proliferation”, Journal of Biomedical Materials Research Biomaterials, Vol. 78, No. 2 , pp. 283-290, 2006.
16. Maheshwari, S. U., Samuel, V. K., and Nagiah, N., “Fabrication and Evaluation of (PVA/HAp/PCL) Bilayer Composites as Potential Scaffolds for Bone Tissue Regeneration Application”, Ceramics International, Vol. 40, No. 6, pp. 8469-8477, 2014.
17. Mkhabela, V., and Ray, S. S., “Biodegradation and Bioresorption of Poly (ɛ-Caprolactone) Nanocomposite Scaffolds”, International Journal of Biological Macromolecules, Vol. 79, pp. 186-192, 2015.
18. Mohan, N., and Nair, P. D., “Polyvinyl Alcohol‐poly (Caprolactone) Semi IPN Scaffold with Implication for Cartilage Tissue Engineering”, Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 84, No. 2, pp. 584-594, 2008.
19. Zegzula, H. D., Buck, D. C., Brekke, J., Wozney, J. M., and Hollinger, J. O., “Bone Formation with Use of RHBMP-2 (Recombinant Human Bone Morphogenetic Protein-2)”, Journal of Bone & Joint Surgery, Vol. 79, No. 12, pp. 1778-1790, 1997.
20. Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R., “Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering”, Biomaterials, Vol. 27, No. 18, pp. 3413-3431, 2006.
21. Befort, C. A., Nazir, N., and Perri, M. G., “Prevalence of Obesity Among Adults from Rural and Urban Areas of the United States: findings from NHANES (2005‐2008)”, The Journal of Rural Health, Vol. 28, No. 4, pp. 392-397, 2012.
22. Amiraliyan, N., Nouri, M., and Kish, M. H., “Structural Characterization and Mechanical Properties of Electrospun Silk Fibroin Nanofiber Mats”, Polymer Science Series A, Vol. 52, No. 4, pp. 407-412, 2010.

تحت نظارت وف ایرانی