تأثیر عنصر مس بر نرخ تخریب و خواص بیولوژیکی آلیاژ منیزیم- آلومینیوم- مس ساخته شده به‌روش پلاسمای جرقه ای

نویسندگان

1 1. دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

2 2. دانشکده مهندسی کشاورزی، دانشگاه صنعتی اصفهان

چکیده

هدف از انجام این پژوهش، ساخت آلیاژهای Mg-Al-Cu حاوی مقادیر مختلف مس (0، 25/0، 5/0 و 1 درصد وزنی) به‌کمک روش تف­جوشی جرقه ­ای و ارزیابی نرخ تخریب و خواص بیولوژیکی آنها است. نتایج نشان داد که با افزودن 25/0 درصد مس نرخ تخریب از 039/0 سانتی‌متر بر ساعت در منیزیم خالص به 0058/0 سانتی­متر بر ساعت کاهش یافت. به‌علاوه درصد زیست‌پذیری سلول‌های MG63 در تماس با آلیاژ Mg-1Al-0.25Cu به‌طور قابل توجهی بالاتر (25/1 برابر) از آن در تماس با منیزیم خالص بود که به‌دلیل نرخ مناسب رهایش یون عناصر بود. همچنین، آلیاژ Mg-1Al-0.25Cu مس رفتار ضدباکتریایی قابل توجهی از خود نشان داد. بنابراین آلیاژ Mg-1Al-0.25Cu با نرخ تخریب مناسب، زیست­ سازگاری مطلوب و خواص ضدباکتریایی می ­تواند به عنوان کاشتنی­ ارتوپدی زیست‌تخریب ­پذیر معرفی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Cu Element on Degradation Rate and Biological Properties of Mg-Al-Cu Alloy Prepared by Spark Plasma Sintering

نویسندگان [English]

  • N. Safari 1
  • M. Kharaziha 1
  • M. Toroghinejad 1
  • M. Kharaziha 1
  • V. Saeedi 2
1 1. Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.
2 2. Department of Agricultural Engineering, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

The aim of this study was to fabricate the Mg-1Al-Cu alloys with various amounts of Cu content (0, 0.25, 0.5 and 1 wt.%) using spark plasma sintering (SPS) approach and evaluation of their degradation rate and biological properties. The results indicated that Cu incorporation (0.25 wt.%) significantly diminish degradation rate from 0.039 cm/h in pure Mg to 0.00584 cm/h in Mg-1Al-0.25Cu alloy. In addition, Mg-1Al-0.25Cu alloy could noticeably (1.25 times) promote viability of MG63 cells compared to pure Mg, owing to the optimized ion release. Moreover, the antibacterial activity of Mg-1Al-0.25Cu was considerable. In summary, Mg-1Al-0.25Cu alloy with appropriate degradation rate, good biocompatibility and antibacterial properties can be introduced as a biodegradable orthopedic implant.

کلیدواژه‌ها [English]

  • Magnesium alloy
  • Degradation rate
  • Cytotoxicity
  • Antibacterial Properties
1. Bose, S., and Tarafder, S., “Calcium Phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review”, Acta Biomaterialia, Vol. 8, No. 4, pp. 1401-1421, 2012.
2. Doblaré, M., Garcıa, J., and Gómez, M., “Modelling Bone Tissue Fracture and Healing: A Review”, Engineering Fracture Mechanics, Vol. 71, No. 13-14, pp. 1809-1840, 2004.
3. Minagar, S., Berndt, C., and Wang, J., “A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces”, Acta Biomaterialia, Vol. 8, No. 8, pp. 2875-2888, 2012.
4. Niinomi, M., “Metallic Biomaterials”, Journal of Artificial Organs, Vol. 11, No. 3, p. 105, 2008.
5. Pietak, A., Mahoney, P., Dias, G. J., and Staiger, M. P., “Bone-Like Matrix Formation on Magnesium and Magnesium Alloys”, Journal of Materials Science: Materials in Medicine, Vol. 19, No. 1, p. 407-415, 2008.
6. Uddin, M. H., Matsumoto, T., and Okazaki M., “Biomimetic Fabrication of Apatite Related Biomaterials”, Biomimetics Learning from Nature. 2010, InTech.
7. Brar, H. S., Wong, J., and Manuel, M. V. “Investigation of the Mechanical and Degradation Properties of Mg-Sr and Mg-Zn-Sr Alloys for use as Potential Biodegradable Implant Materials”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 7, pp. 87-95, 2012.
8. Zhang, X. -b., Wang, Z., Xue, Y., and Qiang, W., “Microstructure and Biocorrosion Behaviors of Solution Treated and As-Extruded
Mg-2.2Nd-xSr-0.3Zr Alloys”, Transactions of Nonferrous Metals Society of China, Vol. 24, No. 12, pp. 3797-3803, 2014.
9. Xin, Y., Hu, T., and Chu, P., “In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review”, Acta Biomaterialia, Vol. 7, No. 4, pp. 1452-1459, 2011.
10. Choudhary, L., and Raman, R. S., “Magnesium Alloys as Body Implants: Fracture Mechanism under Dynamic and Static Loadings in a Physiological Environment”, Acta Biomaterialia, Vol. 8, No. 2, pp. 916-923, 2012.
11. Rashad, M., Pan, F., Tang, A., and Asif, M., “Improved Strength and Ductility of Magnesium with Addition of Aluminum and Graphene Nanoplatelets (Al+ GNPs) using Semi Powder Metallurgy Method”, Journal of Industrial and Engineering Chemistry, Vol. 23, pp. 243-250, 2015.
12. Charyeva, O., Neilands, J., and Svensäter, G., “Bacterial Biofilm Formation on Resorbing Magnesium Implants”, Open Journal of Medical Microbiology, Vol. 5, No. 01, p. 1, 2015.
13. Li, Y., Liu, L., Wan, P., Zhai, Z., Mao, Z., and Ouyang, Z., “Biodegradable Mg-Cu Alloy Implants with Antibacterial Activity for the Treatment of Osteomyelitis: In Vitro and in Vivo Evaluations”, Biomaterials, Vol. 106, pp. 250-263, 2016.
14. Borkow, G., and J. Gabbay. “Copper, an Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections”, Current Chemical Biology, Vol. 3, No. 3, pp. 272-278, 2009.
15. Liu, C., Fu, X., Pan, H., Wan, P., Wang, L., Tan, L., and Wang, K., “Biodegradable Mg-Cu Alloys with Enhanced Osteogenesis, Angiogenesis, and Long-Lasting Antibacterial Effects”, Scientific Reports, Vol. 6, p. 27374, 2016.
16. Zhang, J., Zhang, J., Leng, Z., Zhang, M., Meng, J., and Wu, R., “Effect of Ce on Microstructure, Mechanical Properties and Corrosion Behavior of High-Pressure Die-Cast Mg-4Al-Based Alloy”, Journal of Alloys and Compounds, Vol. 509, No. 3, pp. 1069-1078, 2011.
17. Asano, K., Enoki, H., and Akiba, E., Synthesis of HCP, FCC and BCC Structure Alloys in the Mg-Ti Binary System by Means of Ball Milling, Journal of Alloys and Compounds, Vol. 480, No. 2, pp. 558-563, 2009.
18. Asgharzadeh, H., Yoon, E. Y., Chae, H. J., and Kim, T. S., “Microstructure and Mechanical Properties of a Mg-Zn-Y Alloy Produced by a Powder Metallurgy Route”, Journal of Alloys and Compounds, Vol. 586, pp. S95-S100, 2014.
19. Saheb, N., Iqbal, Z., Khalil, A., and Hakeem, A. S., “Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review” Journal of Nanomaterials, p. 18, 2012.
20. Bakhsheshi-Rad, H., Abdul-Kadir, M. R., and Idris, M. H., “Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5 Ca-xZn Alloys”, Corrosion Science, Vol. 64, pp. 184-197, 2012.
21. Zhang, S., Zhang, X., Zhao, C., Li, J., and Song, Y., “Research on an Mg-Zn Alloy as a Degradable Biomaterial”, Acta Biomaterialia, Vol. 6, No. 2, pp. 626-640, 2010.
22. Hallab, N. J., Vermes, C., and Messina, C., “Concentration and Composition‐Dependent Effects of Metal Ions on Human MG‐63 Osteoblasts”, Journal of Biomedical Materials Research, Vol. 60, No. 3, pp. 420-433, 2002.
23. Golafshan, N., Kharaziha, M., and Fathi, M., “Tough and Conductive Hybrid Graphene-PVA: Alginate Fibrous Scaffolds for Engineering Neural Construct”, Carbon, Vol. 111, pp. 752-763, 2017.
24. Aravind, M., Yu, P., and Yau, M., “Formation of Al2Cu and AlCu Intermetallics in Al (Cu) Alloy Matrix Composites by Reaction Sintering”, Materials Science and Engineering: A, Vol. 380, No. 1-2, pp. 384-393, 2004.
25. Lathabai, S., and Lloyd, P., “The Effect of Scandium on the Microstructure, Mechanical Properties and Weldability of a Cast Al-Mg Alloy”, Acta Materialia, Vol. 50, No. 17, pp. 4275-4292, 2002.
26. Selvam, M., Saminathan, K., Siva, P., and Saha, P., “Corrosion Behavior of Mg/graphene Composite in Aqueous Electrolyte”, Materials Chemistry and Physics, Vol. 172, pp. 129-136, 2016.
27. Kirkland, N., Birbilis, N., and Staiger, M., “Assessing the Corrosion of Biodegradable Magnesium Implants: a Critical Review of Current Methodologies and Their Limitations”, Acta Biomaterialia, Vol. 8, No. 3, pp. 925-936, 2012.
28. Cao, F., Song, G. -L., and Atrens, A., “Corrosion and Passivation of Magnesium Alloys”, Corrosion Science, Vol. 111, pp. 835-845, 2016.
29. Padan, E., Bibi, E., and Krulwich, T. A., “Alkaline pH Homeostasis in Bacteria: New Insights”, Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 1717, No. 2, pp. 67-88, 2005.
30. Ren, L., Yang, K., Guo, L., and Chai, H., “Preliminary Study of Anti-Infective Function of a Copper-Bearing Stainless Steel”, Materials Science and Engineering: C, Vol. 32, No. 5, pp. 1204-1209, 2012.

ارتقاء امنیت وب با وف ایرانی