مطالعه ابتدا به‌ساکن ویژگی‌های اپتیکی و مغناطیسی تنگستن دی‌سولفید

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این پژوهش، خواص اپتیکی تنگستن دی‌سولفید شامل تابع دی‌الکتریک، ضریب شکست استاتیکی، سهم موهومی تابع دی‌الکتریک، شکاف اپتیکی، طیف اتلاف انرژی و خواص مغناطیسی آن مطالعه شده است. محاسبات توسط بسته محاسباتی کوانتوم اسپرسو برپایه نظریه تابعی چگالی و با روش شبه‌پتانسیل انجام شده است. ضرایب شکست استاتیکی مربوط به این ترکیب در راستاهای مختلف x و z به‌ترتیب معادل 66/3 و 55/2 محاسبه شد. اندازه شکاف اپتیکی حاصل از سهم موهومی تابع دی‌الکتریک، معادل 45/1 الکترون‌ولت محاسبه شد. همچنین انرژی پلاسمون حجمی حاصل از طیف اتلاف انرژی در راستاهای x و z به‌ترتیب برابر با 95/17 الکترون‌ولت و 25/17 الکترون‌ولت به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Ab-Initio Study of Optical and Magnetic Properties of Tungsten Disulfide

نویسندگان [English]

  • H. Salehi
  • N. Zhulayi Bakhoda
  • P. Amiri
Department of Physics, Faculty of Science, ShahidChamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

In this research, the optical properties of tungsten disulfide including dielectric function, the static refractive index, the imaginary part of the dielectric function, optical band gap, energy loss spectrum and its magnetic properties have been studied. Calculations have been done by using Quantum Espresso package which is based on density functional theory and pseudo-potential technique. The static refractive indices of this compound at diffrent x and z directions were calculated 3.66 and 2.55, respectively. The amount of optical band gap, obtained from the imaginary part of dielectric function, was estimated to be 1.45 eV. In addition, bulk plasmon energy, obtained from energy loss spectrum at x and z directions, were obtained to be 17.95 eV and 17.25 eV, respectively.

کلیدواژه‌ها [English]

  • Tungsten disulfide
  • density functional theory
  • Optical properties
1. Kuc, A., Zibouche, N., and Heine, T., “How Does Quantum Confinement Influence the Electronic Structure of Transition Metal Sulfides TmS2”, Physical. Review. B, Vol. 83, p. 245213, 2011.
2. Liu, B., Han, Y. H., Gao, C. X., Yanzhang, M., Gang, P., Baojia, W., Cailong, L., Yue, W., Tingjing, H., Xiaoyan, C., Wanbin, R., Yan, L., Ningning, S., Hongwu, L., and Guangtian, Z., “Pressure Induced Semiconductor- Semimetal Transition in WSe2”, Journal of Physical Chemistry C, Vol. 114, pp. 14251-14254, 2010.
3. Brien, M. O., Lee, K., Morrish, R., Berner, N. C., McEvoy, N., Wolden, C. A., and Duesberg, G. S., “Plasma Assisted Synthesis of WS2 for Gas Sensing Applications”, Chemical Physics Letters, Vol. 615, pp. 6-10, 2014.
4. Prouzet, E., Heising, J., and Kanatzidis, M. G., “Structure of Restacked and Pillared WS2: An X-ray Absorption Study”, Chemistry of Materials, Vol. 15, pp. 412-418, 2003.
5. Heising, J., and Kanatzidis, M. G., “Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography”, Journal of the American Chemical Society, Vol. 121, pp. 638-643, 1999.
6. Gutiérrez, H. R., Perea-López, N., Elías, A. L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V. H., Terrones, H., and Terrones, M., “Extraordinary Room-Temperature Photoluminescence in WS2 Monolayers”, Nano Letters, Vol. 13, No. 8, pp. 3447-3454, 2013.
7. Carvalho, A., Ribeiro, R. M., and Castro Neto, A. H., “Band Nesting and the Optical Response of Two-Dimensional Semiconducting Transition Metal Dichalcogenides”, Physical. Review, Vol. 88, p. 115205, 2013.
8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M., “Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials”, Journal of Physics: Condensed Matter, Vol. 21, pp. 395502-395536, 2009.
9. Dresselhaus, M., “Optical Properties of Solids”, Proceedings of the International School of Physics, Enrico Fermi, Academic Press, NY, 1966.
10. Ahuja, U., Dashora, A., Tiwari, H., Kothari, D. C., and Venugopalan, K., “Electronic and Optical Properties of MoS2-WS2 Multi-Layers: First Principles Study”, Computational Materials Science, Vol. 92, pp. 451-456, 2014.
11. Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific Publishing Company Incorporated, 1994.
12. Ballif, C., Regula, M., and Levy, F., “Optical and Electrical Properties of Semiconducting WS2 Thin Films: From Macroscopic to Local Probe Measurements”, Solar Energy Materials & Solar Cells, Vol. 57, pp. 189-207, 1999.
13. Bhattacharyya, S., and Singh, A. K., “Semiconductor-Metal Transition in Semiconducting Bilayer Sheets of Transition Metal Dichalcogenides”, Physical. Review. B, Vol. 86, p. 075454, 2012.
14. Frey, G. L., Tenne, R., Matthews, M. J., Dresselhaus, M. S., and Dresselhaus, G., “Optical Properties of MS2 (M = Mo, W) Inorganic Fullerene-Like and Nanotube Material Optical Absorption and Resonance Raman Measurements”, Journal of Materials Research, Vol. 13, No. 9, pp. 2412-2417, 1998.
15. Ambrosch-Draxl, C., and Sofo, J. O., “Linear Optical Properties of Solids Within the Full- Potential Linearized Augmented Planewave Method”, Computer Physics Communications, Vol. 175, No. 1, pp. 1-14, 2006.
16. Zhang, H., Li, X. B., and Liu, L. M., “Tunable Electronic and Magnetic Properties of WS2 Nanoribbons”, Journal of Applied Physics, Vol. 114, p. 093710, 2013.

تحت نظارت وف ایرانی