تأثیر افزودن سیلیکای آمورف بر استحاله مارتنزیتی زیرکونیا و بررسی مکانیزم‌های پایدارسازی ساختار تتراگونال زیرکونیا

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان.

چکیده

هدف از این تحقیق بررسی تأثیر افزودن SiO2 آمورف در تحولات فازی و ریزساختاری ZrO2 است. نتایج پراش پرتو ایکس (XRD) نشان داد، به‌دلیل تشابه ساختاری بین زمینه آمورف و ساختار تتراگونال ZrO2، اولین فازی که از زمینه آمورف جوانه می‌زند فاز شبه‌پایدار تتراگونال است. این فاز در نمونه ZrO2 خالص ناپایدار بوده و در دمای حدود 600 درجه سانتی‌گراد به فاز پایدار مونوکلینیک تبدیل می‌شود. درحالی ‌که با افزودن SiO2 به ساختار ZrO2، فاز شبه‌پایدار تتراگونال حتی تا دمای حدود 1100 درجه سانتی‌گراد پایدار می‌ماند. محدوده دمایی پایداری ساختار تتراگونال شبه‌پایدار از حدود 150 درجه سانتی‌گراد در ذرات ZrO2 خالص به حدود 500 درجه سانتی‌گراد در ذرات کامپوزیتی ZrO2-SiO2 با محتوای 10 درصد مولی SiO2 افزایش پیدا کرد. با افزایش بیشتر محتوای SiO2 به 30 درصد مولی، محدوده پایداری دمایی ساختار تتراگونال شبه‌پایدار ثابت ماند ولی میانگین اندازه ذرات نسبت به ذرات خالص ZrO2، حدود 1/6 برابر کاهش یافت. پایداری ساختار تتراگونال شبه‌پایدار ZrO2 به‌دلیل اثر محدودکنندگی SiO2 و ایجاد پیوندهای شیمیایی جدید Zr-O-Si در فصل مشترک ذرات است. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms

نویسندگان [English]

  • M. Farhadian
  • M. A. Golozar
  • K. Raeissi
  • M. A. Golozar
Department of Materials Engineering, Isfahan University of Technology, Iran.
چکیده [English]

This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2 sample and transforms to a stable monoclinic phase at around 600 oC. However, addition of amorphous SiO2 to ZrO2 structure causes metastable tetragonal phase to remain stable up to around 1100 oC. The temperature range for stability of metastable tetragonal ZrO2 structure increased from about 150 oC in pure ZrO2 particles to around 500 oC in ZrO2-10 mol.% SiO2 composite powders. A further increase in SiO2 content up to 30 mol.% did not change the stabilization temperature range but the average particle size reduced around 1.6 times compared to pure ZrO2 particles. Stabilization of metastable tetragonal ZrO2 explained by constrained effect of SiO2 layer surrounding zirconia nuclei. The thickness of this SiO2 layer enhanced by increasing SiO2 content which limited the growth of ZrO2 nuclei resulting in finer particle sizes.

کلیدواژه‌ها [English]

  • composite
  • zirconia
  • Amorphous silica
  • stabilizer
  • Sol-gel
1. Mochales, C., Frank, S., Zehbe, R., Traykova, T., Fleckenstein, C., Maerten, A., Fleck, C., and Mueller W., “Tetragonal and Cubic Zirconia Multilayered Ceramic Constructs Created by EPD”, The Journal of Physical Chemistry B, Vol. 117, No. 6, pp. 1694-1701, 2012.
2. Soon, G., Pingguan- Murphy, B., Lai, K. W., and Akbar, S. A., “Review of Zirconia-Based Bioceramic: Surface Modification and Cellular Response”, Ceramics International, Vol. 42, No. 11, pp. 12543-12555, 2016.
3. Lashneva, V. V., Shevchenko, A. V., and Dudnik, E. V., “Bioceramic Based on Zirconium Dioxide”, Glass and Ceramics, Vol. 66, No. 3, pp. 140-143, 2009.
4. Lughi, V., and Sergo, V., “Low Temperature Degradation -Aging- of Zirconia: A Critical Review of the Relevant Aspects in Dentistry”, Dental Materials, Vol. 26, No. 8, pp. 807-820, 2010
5. Chevalier, J., “What Future for Zirconia as a Biomaterial?”, Biomaterials, Vol. 27, No. 4, pp. 535-543, 2006..
6. Ahemen, I., Dejene, F. B., and Botha, R., “Strong Green-Light Emitting Tb3+ Doped Tetragonal ZrO2 Nanophosphors Stabilized by Ba2+ Ions”, Journal of Luminescence, Vol. 201, pp. 303-313, 2018.
7. Ramos-Guerra, A. I., Martínez-Merlín, I., and Falcony, C., “The Role of the Stabilizing Agent on the Structural and Luminescent Properties of Hydrothermally Synthesized ZrO2:Tb3+ Phosphors”, Ceramics International, Vol. 44, No. 12, pp. 13744-13749, 2018.
8. Lawson, S., “Environmental Degradation of Zirconia Ceramics”, Journal of the European Ceramic Society, Vol. 15, No. 6, pp. 485-502, 1995.
9. Srinivasan, R., Rice, L., and Davis, B. H., “Critical Particle Size and Phase Transformation in Zirconia: Transmission Electron Microscopy and X-ray Diffraction Studies”, Journal of the American Ceramic Society, Vol. 73, No. 11, pp. 3528-3530, 1990.
10. Green, D., Hannink, R., and Swain, M., Transformation Toughening of Ceramics, Boca Raton, FL: CRC, 1989.
11. del Monte, F., Larsen, W., and Mackenzie, J. D., “Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides”, Journal of the American Ceramic Society, Vol. 83, No. 3, pp. 628-634, 2000.
12. Osendi, M. I., Moya, J. S., Serna, C. J., and Soria, J., “Metastability of Tetragonal Zirconia Powders”, Journal of the American Ceramic Society, Vol. 68, No. 3, pp. 135-139, 1985.
13. Finsel, M., Hemme, M., Döring, S., Rüter, J., Dahl, G., Krekeler, T., Kornowski, A., Ritter, M., Weller, H., and Vossmeyer, T., “Synthesis and Thermal Stability of ZrO2-SiO2 Core-Shell Submicron Particles”, Journal of the American Ceramic Society, Vol. 9, No. 46, pp. 26902-26914, 2019.
14. Garvie, R. C., “Stabilization of the Tetragonal Structure in Zirconia Microcrystals”, The Journal of Physical Chemistry, Vol. 82, No. 2, pp. 218-224, 1978.
15. Gulino, A., La Delfa, S., Fragalà, I., and Egdell, R. G., “Low-Temperature Stabilization of Tetragonal Zirconia by Bismuth”, Chemistry of Materials, Vol. 8, No. 6, pp. 1287-1291, 1996.
16. Li, P., Ohtsuki, C., Kokubo, T., Nakanishi, K., Soga, N., and de Groot, K., “The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants”, Journal of Biomedical Materials Research, Vol. 28, No. 1, pp. 7-15, 1994.
17. Monte, F., Larsen, W., and Mackenzie, J. D., “Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides”, Journal of the American Ceramic Society, Vol. 83, No. 3, pp. 628-634, 2000.
18. Del Monte, F., Larsen, W., and Mackenzie, J. D., “Chemical Interactions Promoting the ZrO2 Tetragonal Stabilization in ZrO2-SiO2 Binary Oxides”, Journal of the American Ceramic Society, Vol. 83, No. 6, pp. 1506-1512, 2000.
19. Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., and Tanemura, S., “Preparation and Characterization of Polycrystalline Anatase and Rutile TiO2 thin Films by Rf Magnetron Sputtering”, Applied Surface Science, Vol. 212, pp. 255-263, 2003.
20. Nagarajan, V., and Rao, K., “Crystallization Studies of ZrO2-SiO2 Composite Gels”, Journal of Materials Science, Vol. 24, No. 6, pp. 2140-2146, 1989.
21. Yoshinaka, M., Hirota, K., and Yamaguchi, O., “Formation and Sintering of TiO2 (Anatase) Solid Solution in the System TiO2‐SiO2”, Journal of the American Ceramic Society, Vol. 80, No. 10, pp. 2749-2753, 1997.
22. Miranda Salvado, I. M., Serna, C. J., and Fernandez Navarro, J. M., “ZrO2-SiO2 Materials Prepared by Sol-Gel”, Journal of Non-Crystalline Solids, Vol. 100, No. 1, pp. 330-338, 1988.
23. Parashar, V. K., Raman, V., and Bahl, O. P., “Thermal Evolution of Sol-Gel Derived Zirconia and Binary Oxides of Zirconia-Silica”, Journal of Materials Science Letters, Vol. 15, No. 18, pp. 1625-1629, 1996.
24. Bosman, H. J. M., Kruissink, E. C., Vanderspoel, J., and Vandenbrink, F., “Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides”, Journal of Catalysis, Vol. 148, No. 2, pp. 660-672, 1994.
25. Okasaka, K., Nasu, H., and Kamiya, K., “Investigation of Coordination State of Zr4+ Ions in the Sol-Gel-Derived ZrO2-SiO2 Glasses by EXAFS”, Journal of Non-Crystalline Solids, Vol. 136, No. 1-2, pp. 103-110, 1991.
26. Dang, Z., Anderson, B. G., Amenomiya, Y., and Morrow, B. A., “Silica-Supported Zirconia. 1. Characterization by Infrared Spectroscopy, Temperature-Programmed Desorption, and X-ray Diffraction”, The Journal of Physical Chemistry, Vol. 99, No. 39, pp. 14437-14443, 1995.
27. Nogami, M., “Glass Preparation of the ZrO2-SiO2 System by the Sol-Gel Process from Metal Alkoxides”, Journal of Non-Crystalline Solids, Vol. 69, No. 2, pp. 415-423, 1985.
28. Grant, J., and Lind, S., “Hackh's Chemical Dictionary”, The Journal of Physical Chemistry, Vol. 50, No. 5, pp. 445-445, 1946.
29. Tani, E., Yoshimura, M., and Sōmiya, S., “Formation of Ultrafine Tetragonal ZrO2 Powder under Hydrothermal Conditions”, Journal of the American Ceramic Society, Vol. 66, No. 1, pp.11-14, 1983.

ارتقاء امنیت وب با وف ایرانی