تف‌جوشی بدون فشار و خواص مکانیکی و حرارتی نانوکامپوزیت ZrB2-ZrC-SiC

نویسندگان

مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

چکیده

سرامیک‌های فوق دما بالا به‌دلیل ویژگی‌های منحصر به فرد، پتانسیل کافی برای کاربرد‌های هوافضایی، نظامی و صنعتی را دارند. یکی از این سرامیک‌ها کامپوزیت ZrB2-SiC است که با توجه به خواص مکانیکی، حرارتی و مقاومت به اکسیداسیون عالی مورد توجه واقع شده و تحقیقات بسیاری روی آن صورت گرفته است. در این تحقیق، اثر افزودن ZrC بر رفتار تف‌جوشی بدون فشار، خواص مکانیکی، ریزساختاری و حرارتی نانوکامپوزیت ZrB2-SiC مطالعه شد. در این تحقیق از پودرهای ZrB2 و ZrC در مقیاس میکرون و پودر SiC در مقیاس نانو استفاده شد. نانوکامپوزیت‌های ZrB2-20vol% SiC با افزودن 3، 6، 9، 12 و 15 درصد حجمی ZrC، به‌روش بدون فشار و در دمای 2100 درجه سانتی‌گراد تف‌جوشی شدند. نتایج نشان داد، افزودن ZrC موجب بهبود چگالی نسبی، سختی و چقرمگی شکست نانوکامپوزیت ZrB2-20vol% SiC می‌شود. بهینه خواص در نمونه حاوی 12 درصد حجمی ZrC به‌دست آمد و چگالی نسبی، سختی و چقرمگی شکست این نمونه به‌ترتیب 99/01 درصد، 16/95 گیگاپاسکال و 5/43 مگاپاسکال بر جذر متر گزارش شد. تجزیه حرارتی نمونه‌ها نشان داد افزودن ZrC موجب کاهش نفوذ حرارتی این نانوکامپوزیت شده است، به‌طوری که بالاترین میزان نفوذ حرارتی دمای محیط برای نمونه فاقد ZrC با مقدار 35/3 ‌میلی‌متر مربع بر ثانیه گزارش شد.

کلیدواژه‌ها


عنوان مقاله [English]

Pressureless Sintering & Mechanical & Thermal Properties of ZrB2-ZrC-SiC Nanocomposite

نویسندگان [English]

  • I. Forooghi
  • M. Mashhadi
Department of Materials & Manufacturing Engineering, Malek Ashtar University of Technology, Tehran, Iran.
چکیده [English]

Due to their unique features, Ultra-High Temperature Ceramics (UHTCs) have potential applications in aerospace, military and industry. ZrB2-SiC composite as one of these ceramics has been at the center of researches due to its attractive mechanical, thermal and oxidation resistance. In this study, the effect of ZrC addition on pressureless sintering behavior, mechanical, microstructural and thermal properties of ZrB2-SiC nanocomposite were investigated. For this purpose, micron-sized ZrB2 and ZrC powders and nano-sized SiC powder were used. ZrB2-20vol% SiC nanocomposites with addition of (3, 6, 9, 12, 15) vol% ZrC were sintered by pressureless sintering method at 2100 ºC. The results showed that the addition of ZrC improved relative density, hardness and fracture toughness of ZrB2-20vol% SiC nanocomposite. Optimum properties were obtained in a sample containing 12 vol% ZrC and the relative density, hardness and fracture toughness of this sample were reported to be 99.01%, 16.95 Gpa and 5.43 Mpa.m0.5, respectively. Thermal analysis of the samples showed that by adding ZrC, thermal diffusivity of this nanocomposite reduced. The highest thermal diffusivity at room temperature equaled 35.3 mm2 /s and was obtained for ZS composite.

کلیدواژه‌ها [English]

  • Ultra high temperature ceramics
  • ZrB2
  • ZrC
  • Pressureless sintering
  • nanocomposite
1. Weng, L., Zhang, X., Han, W., and Han, J., “Fabrication and Evaluation on Thermal Stability of Hafnium Diboride Matrix Composite at Severe Oxidation Condition”, International Journal of Refractory Metals and Hard Materials, Vol. 27, pp. 711-717, 2009.
2. Meng, S. H., Liu, G. Q., An, J., and Sun, S. L., “Effects of Different Additives on Microstructure and Crack Resistance for an Ultra-high Temperature Ceramic”, International Journal of Refractory Metals and Hard Materials, Vol. 27, pp. 813-816, 2009.
3. Chen, D. J., Xu, L., Zhang, X. H., Ma, B. X., and Hu, P., “Preparation of ZrB2 Based Hybrid Composites Reinforced with SiC Whiskers and SiC Particles by Hot-Pressing”, International Journal of Refractory Metals and Hard Materials, Vol. 27 pp. 792-795, 2009.
4. Zhao, Y., Wang, L. J., Zhang, G. J., Jiang, W., and Chen, L. D., “Effect of Holding Time and Pressure on Properties of ZrB2eSiC Composite Fabricated by The Spark Plasma Sintering Reactive Synthesis Method”, International Journal of Refractory Metals and Hard Materials, Vol. 27, pp. 177-180, 2009.
5. Levine, S. R., Opila, E. J., Halbig, M. C., Kiser, J. D., Singh, M., and Salem, J. A., “Evaluation of Ultra-high Temperature Ceramics for Aeropropulsion Use”, Journal of the European Ceramic Society, Vol. 22, pp. 2757-2767, 2002.
6. Fahrenhotz, W. G., Hilmas, G. E., Chanberlain, A. L., and Zimmermann, J. W., “Processing and Characterization of ZrB2 Based Ultrahigh Temperature Monolithic and Fibrous Monolithic Ceramics”, Journal of Materials Science, Vol. 39, pp. 5951-5957, 2004.
7. Monteverde, F., and Bellosi, A., “The Resistance to Oxidation of HfB2- SiC Composite”, Journal of the European Ceramic Society, Vol. 25, pp. 1025-1031, 2005.
8. Wu, G. J., Zhang, Y. M., and Kan, P. L., “Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High Temperature Ceramics at 1800 Degrees C”, Journal of the American Ceramic Society, Vol. 89, pp. 2967-2969, 2006.
9. Nasiri, Z., Mashhadi, M., and Abdollahi, A., “Effect of Short Carbon Fiber Addition on Pressureless Densification and Mechanical Properties of ZrB2-SiC-Csf Nanocomposite”, International Journal of Refractory Metals and Hard Materials, Vol. 5, pp. 216-223, 2015.
10. Han, J., Hu, P., Zhang, X., Meng, S., and Han, W., “Oxidation-Resistant ZrB2-SiC Composites at 2200° C”, Journal of Composites Science and Technology, Vol. 68, pp. 799-806, 2008.
11. Zhao, Y., Wang, L. J., Zhang, G. J., Jiang, W., and Chen, L. D., ‘‘Preparation and Microstructure of a ZrB2 -SiC Composite Fabricated by the Spark Plasma Sintering-Reactive Synthesis (SPS-RS) Method”, Journal of the American Ceramic Society, Vol. 90, pp. 4040-4042, 2007.
12. Tsuchida, T., and Yamamoto, S., ‘‘MA-SHS and SPS of ZrB2-ZrC Composites”, Journal of the Solid State Ionics, Vol. 172, pp. 215-216, 2004.
13. Zimmermann, J. W., Hilmas, G. E., Fahrenholtz, W. G., Monteverde, F., and Bellosi, A., ‘‘Fabrication and Properties of Reactively Hot Pressed ZrB2 -SiC Ceramics”, Journal of the European Ceramic Society, Vol. 27, pp. 2729-2736, 2007.
14. Monteverde, F., and Bellosi, A., ‘‘Efficacy of HFN as Sintering Aid in The Manufacturing of Ultra High Temperature Metal Diboride-Matrix Ceramics”, Journal of Materials Research, Vol. 19, pp. 3576-3585, 2004.
15. Asl, M. S., and Kakroudi, M. G., ‘‘Fractographical Assessment of Densification Mechanisms in Hot Pressed ZrB2-SiC Composites”, Journal Ceramics International, Vol. 40, pp. 15273-15281, 2014.
16. Qiang, Qu., Xinghong, Zh., and Songhe, M., “Reactive Hot Pressing and Sintering Characterization of
ZrB2 –SiC–ZrC Composites”, Journal of Materials Science, Vol. 491, pp. 117-123, 2008.
17. Guo, S. Qu., Kagawa, Y., and Nishimura, T., “Mechanical and Physical Behavior of Spark Plasma Sintered ZrC–ZrB2 –SiC Composites”, Journal of the European Ceramic Society, Vol. 28, pp. 1279-1285, 2008.
18. Qu, Q., Han, J. C., Han, W. B., Zhang, X. H., and Hong, C. Q., “In situ Synthesis Mechanism and Characterization of ZrB2-ZrC-SiC Ultra High-temperature Ceramics”, Journal of Materials Chemistry and Physics, Vol. 10, pp. 1216-1221, 2006.
19. Liu, Q., Han, W., and Han, J., “Influence of SiCnp Content on The Microstructure and Mechanical Properties of ZrB2-SiC Nanocomposite”, Journal of Scripta Materialia, Vol. 63, pp. 581-584, 2010.
20. Abdollahi, A., and Mashhadi, M., “Effect of B4C, MoSi2, Nano SiC and Micro-Sized SiC on Pressureless Sintering Behavior, Room-Temperature Mechanical Properties and Fracture Behavior of Zr(Hf)B2 -Based Composites”, Journal Ceramics International, Vol. 40, pp. 10767-10776, 2014.
21. Zhang, X., Hou, Y., Hu, P., Han, W., and Luo, J., “Dispersion and Co-Dispersion of ZrB2 and SiC Nanopowders In Ethanol”, Journal Ceramics International, Vol. 38, pp. 2733-2740, 2012.
22. Zhang, S. C., Hilmas, G. E., and Fahrenholtz, W. G., “Mechanical Properties of Sintered ZrB2-SiC Ceramics”, Journal of the European Ceramic Society, Vol. 31, pp. 893-901, 2011.
23. Nguyen, V., Delbari, S. A., Ahmadi, Z., Shahedi asl, M., Ghassemi, M., Van le, Q., Sabahi, A., Mohammadi, M., and Shokouhimehr, M., “Electron Microscopy Characterization of Porous ZrB2-SiC-AlN Composites Prepared by Pressureless Sintering”, Journal Ceramics International, Vol. 46, pp. 25415-25423, 2020.
24. Zhao, Y., Wang, L. J., Zhang, G. J., Jiang, W., and Chen, L. D., “Preparation and Microstructure of a ZrB2 -SiC Composite Fabricated by the Spark Plasma Sintering-Reactive Synthesis (SPS-RS) Method”, Journal of the American Ceramic Society, Vol. 90, pp. 4040-4042, 2007.
25. Wu, W. W., Zhang, G. J., Kan, Y. M., and Wang, P. L., “Reactive Synthesis and Mechanical Properties of ZrB2-SiC-ZrC Composites”, Journal. Key Engineering Materials, Vols. 368-372, pp. 1758-1760, 2008.
26. Mashhadi, M., and Khaksari, H, “Pressureless Sintering Behavior and Mechanical Properties of ZrB2 –SiC Composites: Effect of SiC Content and Particle Size”, Journal of Material Research & Technology, Vol. 4, pp. 416-422, 2015.
27. Guo, W., and Zhang, G., “Microstructures and Mechanical Properties of Hot-Pressed ZrB2-Based Ceramics from Synthesized ZrB2 and ZrB2-ZrC Powders”, Journal of Advanced Engineering Materials, Vol. 11, pp. 206-210, 2009.
28. Guo, S. Q., Kagawa, Y., and Nishimura, T., “Mechanical and Physical Behavior of Spark Plasma Sintered ZrC-ZrB2-SiC Composites”, Journal of the European Ceramic Society, Vol. 28, pp. 1279-1285, 2008.
29. Chen, J., Chen, J., Chen, Z., Liu, X., Huang, Z., and Huang, Y., “Potential-Current Characteristics in SiC/ZrB2 Composite Ceramics”, Journal of the European Ceramic Society, Vol. 38, pp. 2477-2485, 2018.
30. Ikegami, M., Matsumura, K., Guo, S. Q., Kagawa, Y., andYang, J. M., “Effect of SiC Particle Dispersion on Thermal Properties of SiC Particle-Dispersed ZrB2 Matrix Composites”, Journal of Materials Science, Vol. 45, pp. 5420-5423, 2010.
31. Wu, G. J., Zhang, Y. M., and Kan, P. L., “Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High Temperature Ceramics at 1800 Degrees C”, Journal of the American Ceramic Society, Vol. 91, pp. 2501-2508, 2008.

ارتقاء امنیت وب با وف ایرانی