مقایسه ریزساختار و تغییرات فازی نانوذرات YSZ سنتز شده به روش‌های نمک مذاب و هم‌رسوبی

نویسندگان

دانشگاه صنعتی مالک اشتر، دانشکده مهندسی مواد، اصفهان، شاهین‌شهر، صندوق پستی 115-83145

چکیده

هدف از این پژوهش مقایسه و بررسی تغییرات فازی و ریخت پودرهای اکسید زیرکونیم پایدار شده با ایتریا (YSZ) به روش‌های هم‌رسوبی و نمک مذاب است. برای سنتر پودرهای YSZ به‌روش هم‌رسوبی از عامل رسوب ‌دهنده آمونیاک و در روش نمک مذاب از مخلوط نمک‌های کربنات سدیم و کربنات پتاسیم به‌عنوان نمک مذاب مرکب استفاده شد. مشخصه‌یابی نمونه‌ها با روش‌های پراش‌سنجی پرتوی ایکس، میکروسکوپی الکترونی روبشی گسیل میدانی، طیف‌سنجی مادون قرمز با تبدیل فوریه، آزمون توزین حرارتی و آزمون گرماسنجی تفاضلی انجام شد. بررسی نتایج نشان داد که تنها نمونه‎ هم‌رسوبی تهیه شده از پیش‌ماده اکسی‌کلرید زیرکونیم و نیترات ایتریم دارای تک‌فاز اکسید زیرکونیم پایدار شده با ایتریا با شبکه بلوری تتراگونال و توزیع اندازه ذرات در محدوده 30 تا 55 نانومتر هستند. پودر سنتز شده به‌روش نمک مذاب دارای مخلوط فازی از زیرکونیا با شبکه بلوری مونوکلینیک و زیرکونیای پایدار شده با ایتریا با شبکه بلوری تتراگونال و اندازه ذرات 200 نانومتر است.

کلیدواژه‌ها


عنوان مقاله [English]

COMPARISON OF MICROSTRUCTURE AND PHASE EVOLUTION OF YSZ NANOPARTICLES SYNTHESIZED BY CO-PRECIPITATION AND MOLTEN SALT METHODS

نویسندگان [English]

  • H. R. Karimi
  • H. Mansouri
  • M. R. Loghman Estarki
  • M. Tavoosi
  • H. Jamali
Department of Materials Engineering, Malek Ashtar University of Technology, Isfahan, Iran.
چکیده [English]

This study aimed to compare the phase changes and morphology of yttria-stabilized zirconium oxide powders (YSZ) synthesized by co-precipitation and molten salt methods. Ammonia precipitating agent was used for the synthesis of YSZ powder by co-precipitation method and a mixture of sodium carbonate and potassium carbonate salts was used as a molten salt in the molten salt method. Samples were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) analysis. The results showed that only the sample prepared with zirconium oxychloride and yttrium nitrate by co-precipitation method had a single phase of yttria-stabilized zirconium oxide with tetragonal crystal lattice and particle size distribution in the range of 30 to 55 nm. The powder synthesized by the molten salt method contained a mixture of zirconia with monoclinic crystal lattice and yttria stabilized zirconia with tetragonal crystal lattice and particle size of 200 nm.

کلیدواژه‌ها [English]

  • Yttria stabilized zirconia
  • co-precipitation
  • Molten salt
1. Jones, R. L., Thermal Barrier Coatings. In Metallurgical and Ceramic Protective Coatings, Springer, Dordrecht, pp. 194-235, 1996.
2. Claussen, N., Ruhle, M., and Heuer, A. H., Science and Technology of Zirconia II. No. CONF-8306277-. American Ceramic Society, Inc., Columbus, OH, 1983.
3. Brady, G. S., Clauser, H. R., and Vaccari, J. A., Materials, Their Properties and Uses, Materials Handbook, 5th edition, McGraw-Hill, 2000.
4. Bose, S., High Temperature Coatings, Elsevier Science & Technology Books, Connecticut, USA, 2007.
5. Reed, R. C., The Superalloys, Fundamentals and Applications, Cambridge University Press, 2006.
6. Ilavsky, J., and Stalick, J. K., “Phase Composition and its Changes During Annealing of Plasma-Sprayed YSZ” , Surface and Coatings Technology, Vol. 127, pp. 120-129, 2000.
7. Scardia, P., Galvanettoa, E., Tomasi, A., and Bertaminic, L., “Thermal Stability of Stabilized Zirconia Thermal Barrier Coatings Prepared by Atmosphere-and Temperature-Controlled Spraying”, Surface and Coatings Technology, Vol. 68, pp. 106-112, 1996.
8. Tahir, M. N., Gorgishvili, L., Li, J., Georelik, T., Kolb, U., Nasdala, L., and Teremel, W., “Facile Synthesis and Characterization of Monocrystalline cubic ZrO2 Nanoparticles”, Solid State Sciences, Vol. 9, p. 1105, 2007.
9. Liang, J., Deng, Z. H., Jiang, X., Li, F., and Li, Y., “Photoluminescence of Tetragonal ZrO2 Nanoparticles Synthesized by Microwave Irradiation”, Inorganic Chemistry, Vol. 41, p. 3602, 2002.
10. Viazzi, C., Bonino, J., Ansart, F., and Barnabe, A., “Structural Study of Metastable Tetragonal YSZ Powders Produced via a Sol-Gel Route”, Journal of Alloys and Compounds, Vol. 452, pp. 377-383, 2008.
11. Salavati-Niasari, M., Dadkhah, M., and Davar, F., “Pure Cubic ZrO2 Nanoparticles by Thermolysis of a New Precursor”, Polyhedron, Vol. 28, pp. 3005-3009, 2009.
12. Zinatloo-Ajabshir, S., and Salavati-Niasar, M., “Preparation of Nanocrystalline Cubic ZrO2 with Different Shapes via a Simple Precipitation Approach”, Journal of Material Science: Materials in Electronics, pp. 3918-3928, 2015.
13. Zinatloo-Ajabshir, S., and Salavati-Niasar, “Synthesis of Pure Nanocrystalline ZrO2 via a Simple Sonochemicalassisted Route”, Journal of Industrial and Engineering Chemistry, Vol. 20, pp. 3313-3319, 2014.
14. Zhou, Y., and Yuan, W., “Effect of Y2O3 Addition on the Phase Composition and Crystal Growth behavior of YSZ Nanocrystals Prepared via Coprecipitation Process”, Ceramics International, Vol. 41, pp. 10702-10709, 2015.
15. Roy, J. C., and Pati, R. K., “Chemical Synthesis of Nanocrystalline Zirconia by a Novel Polymer Matrix-Based Precursor Solution Method using Triethanolamine”, Material Letters, Vol. 48, pp. 74-80, 2002.
16. Descmond, M., Brodhag, C., Thevenot, F., “Characteristics and Sintering Behaviour of 3 Mol % Y2O3-ZrO2 Powders Synthesized by Reaction in Molten Salts” , Journal of Materials Science, Vol. 28, pp. 2283-2288, 1993.
17. White, W. B., Basic Science of Advanced Ceramics, Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties Edited by: Somiya, S. , Elsevier Academic Press, pp. 377-383, 2003.
18. Osendi, M., and Serna, S., “Metastability of Tetragonal Zirconia Powders”, Journal of the American Ceramic Society, Vol. 68, pp. 135-139, 1985.
19. Garvie, R. C., “Stabilization of the Tetragonal Structure in Zirconia Microcrystals”, The Journal of Physical Chemistry, Vol. 82, pp. 218-224, 1978.
20. Li, Y., Han, Q., Yao, Y., Li, M., Dong, P., Han, L., Zeng, X., Liu, J., Zhang, Y., and Xiao, J., “Comparative Study of Yttria-Stabilized Zirconia Synthesis by Co-Precipitation and Solvothermal Methods”, Journal of Minerals, Metals & Materials Society, Vol. 71, pp. 3806-3813, 2019.
21. Patil, D. S., Prabhakaran, K., Dayal, R., Durga, C., Gokhala, N. M., Samui, A. B., and Sharma, S. C., “Eight Mole Percent Yttria Stabilized Zirconia Powders by Organic Precursor Route”, Ceramics International, Vol. 34, pp. 1195-1199, 2008.
22. Zarkov, A., Stanulis, A., Sakaliuniene, J., Butkute, S., Abakeviciene, B., Salkus, T., Tautkus, S. F., Orliukas, A., Tamulevicius, S., and Kareiva, A., “On the Synthesis of Yttria-Stabilized Zirconia: a Comparative Study”, Journal of Sol-Gel Science and Technology, Vol. 76, pp. 309-319, 2015.
23. Elshazly, E. S., and Abdelal, O. A. A., “Nickel Stabilized Zirconia for SOFCs: Synthesis and Characterization”, International Journal of Metallurgical Engineering, pp. 130-134, 2013.
24. Javidparvar, A. A., Ramezanzadeh, B., and Ghasemi, E., “The Effect of Surface Morphology and Treatment of Fe3O4 Nanoparticles on the Corrosion Resistance of Epoxy Coating”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 61, pp. 356-366, 2016.
25. Thompson, M. C., and Weber, J. M., “Infrared Spectroscopic Studies on the Cluster Size Dependence of Charge Carrier Structure in Nitrous Oxide Cluster Anions”, The Journal of Chemical Physics, Vol. 144, 2016.
26. Sweetly, A., and Chithambarathanu, T., “Characterization of Mixed Crystals of Sodium Chlorate and Sodium Bromate and the Doped Nickel Sulphate Crystals”, International Journal of Research in Engineering and Technology. Vol. 3, pp. 189-198, 2014.
27. Cui, Y., Chen, Z., and Liu, X., “Preparation of UV-Curing Polymer-ZrO2 Hybrid Nanocomposites Via Auto-Hydrolysis Sol-Gel Process using Zirconium Oxychloride Octahydrate Coordinated with Organic Amine”, Progress in Organic Coatings, Vol. 100, pp. 178-187, 2016.
28. Bensaha, R., and Bensouyad, H., “Synthesis, Characterization and Properties of Zirconium Oxide (ZrO2)-Doped Titanium Oxide (TiO2) Thin Films Obtained Via Sol-Gel Process”, IntechOpen, pp. 207-234, 201.

تحت نظارت وف ایرانی