سنتز و ارزیابی نانوذرات مس/ اکسید مس (II) بر سطح طلا به‌روش اکسیداسیون شیمیایی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در این پژوهش، یک روش جدید و آسان برای سنتز نانوذرات اکسید مس (II) (CuO) به‌روش اکسیداسیون شیمیایی توسط اسید نیتریک گزارش می‌شود. این روش بر پایه فرایند اکسیداسیون نانوذرات مس (Cu NPs) بر سطح الکترود طلا با تأثیر اسید نیتریک است که مورفولوژی سطح الکترود در آن ارزیابی شده است. نانوذرات مس با استفاده از روش پتانسیومتری بر سطح طلا رسوب یافت. غلظت و چگالی بالای نانوذرات مس توسط روش ولتامتری پالس تفاضلی محاسبه شد. فرایند رشد و توزیع نانوذرات اکسید مس روی سطح نانوذرات مس توسط آزمون ساختاری مادون قرمز تبدیل فوریه و طیف‌سنجی پراش پرتوی ایکس نشان داد که نیترات به‌خوبی جذب سطح شده است و قله تیز هیدروکسیل ظاهر شده و نانوذرات اکسید مس (II) در سطح الکترود ایجاد شده‌اند. تغییر مورفولوژی سطح با جذب نیترات بیانگر کاهش متوسط اندازه نانوذرات کروی از حدود 150 نانومتر به 50 نانومتر بود. این امر می‌تواند ناشی از اکسیداسیون نانوذرات مس در سطح و کاهش اندازه ذرات در مقایسه با شرایط عدم حضور اسید نیتریک باشد. با توجه به خواص نانوذرات اکسید مس (II)، این روش آسان و کم‌هزینه می‌تواند به‌عنوان اصلاح‌سازی سطح الکترود ضد باکتری و فعال کاتالیست به‌کار برده شود.

کلیدواژه‌ها


عنوان مقاله [English]

SYNTHESIS AND EVALUATION OF COPPER/COPPER OXIDE (II) NANOPARTICLES ON GOLD SURFACE BY CHEMICAL OXIDATION METHOD

نویسندگان [English]

  • R. Bagheri
  • F. Karimzadeh
  • A. Kermanpur
  • M. Kharaziha
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

A new method has been presented for the synthesis of copper (Cu)/copper oxide (CuO)-nanoparticles (NPs), based on the process of corrosion and oxidation of Cu-NPs on the surface of the gold electrode by nitric acid. Cu-NPs were deposited on the surface using potentiometric method. The high concentration of Cu-NPs was estimated by Differential Pulse Voltammetry (DPV). The process of growth and distribution of CuO-NPs on the surface of Cu-NPs using structural analysis of Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) showed that nitrate was well absorbed and a sharp hydroxyl peak appeared and a phase of CuO NPs formed on the electrode surface. The surface morphology indicated that the average size reduced from about 150 nm to 50 nm in the presence of nitrate. This can be due to the oxidation of Cu nanoparticles on the surface and reduction of particle size compared to the absence of nitric acid. This simple and low-cost method can be used as a surface modification of antibacterial and active catalyst electrodes.

کلیدواژه‌ها [English]

  • Copper nanoparticles
  • Nitric acid
  • electrochemical
  • Surface morphology
  • Oxidation
1. Jitendra, P., Marcus, J. G., Sean, P. H., Elizabeth, J. B., and Hitesh, H., “Tunable Nitric Oxide Release from S-Nitroso-N-acetylpenicillamine via Catalytic Copper Nanoparticles for Biomedical Applications”, ACS Applied Materials & Interfaces, Vol. 9, pp. 15254-15264, 2017.
2. Akihiro, Y., and Norzafriza, A., “Electrical Conductivity of Copper Nanoparticle Thin Films Annealed at Low Temperature”, Thin Solid Films, Vol. 518, pp. 7033-7037, 2010.
3. Ismail, M. I. M., “Green Synthesis and Characterizations of Copper Nanoparticles”, Materials Chemistry and Physics, Vol. 240, p. 122283, 2020.
4. Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C., and Van Duyne, R. P., “Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography”, Nano Letter, Vol. 7, pp. 1947-1952, 2007.
5. Barani, Z., Mohammadzadeh, A., Geremew, A., Huang, C. -Y., Coleman, D., Mangolini, L., Kargar, F., and Balandin, A. A., “Thermal Properties of the Binary‐Filler Hybrid Composites with Graphene and Copper Nanoparticles”, Advanced Materials for Heat Energy Transfer, Vol. 30, p. 1904008, 2020.
6. Xu, C., Wu, G., Liu, Z., Wu, D., Meek, T. T., and Han, Q., “Preparation of Copper Nanoparticles on Carbon Nanotubes by Electroless Plating Method”, Materials Research Bulletin, Vol 39, pp. 1499-1505, 2004.
7. Casiello, M., Picca, R. A., Fusco, C., D’Accolti, L., Leonardi, A. A., Josè Lo Faro, M., Irrera, A., Trusso, S., Cotugno, P., Sportelli, M. C., Cioffi, N., and Nacci, A., “Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation”, Nanomaterials, Vol 8, pp. 78-85, 2018.
8. Dang,T. M. D., Thu Le, T. T. T., Fribourg-Blanc, E., and Dang, M. C., “Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method”, Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol. 2, p. 015009, 2011.
9. Hashemipour, H., Ehtesham Zadeh, M., Pourakbari, R., and Rahimi, P., “Investigation on Synthesis and Size Control of Copper Nanoparticle via Electrochemical and Chemical Reduction Method”, Journal of Physical Science, Vol. 6, pp. 4331-4336, 2011.
10. Zheng, C., Cao, J., Zhang, Y., and Zhao, H., “Insight into Oxidation Mechanism of Cu-Based Oxygen Carrier (Cu/Cu2O/CuO) in Chemical Looping Combustion”, Energy Fuels, Vol. 34, pp. 8718-8725, 2020.
11. Akhavan, O., and Ghaderi, E., “Cu and CuO Nanoparticles Immobilized by Silica Thin Films as Antibacterial Materials and Photocatalysts”, Surface & Coatings Technology, Vol. 205, pp. 219-223, 2010.
12. Wang, H., Xu, J. Z., Zhu, J. J., and Chen, H. Y., “Preparation of CuO Nanoparticles by Microwave Irradiation”, Journal of Crystal Growth, Vol. 244, pp. 88-94, 2002.
13. Musa, A. O., Akomolafe, T., and Carter, M. J., “Production of Cuprous Oxide, a Solar Cell Material, by Thermal Oxidation and a Study of Its Physical and Electrical Properties”, Solar Energy Materials & Solar Cells, Vol. 51, pp. 305-316, 1998.
14. Bednorz, J. G., and Muller, K. A. Z., “Possible highTc Superconductivity in the Ba−La−Cu−O System”, Physica. B: Condensed. Matter, Vol. 64, pp. 189-193, 1986.
15. Forsyth, J. B., Brown, P. J., and Wanklyn, B. M., “Magnetism in Cupric Oxide”, Journal of Physics C: Solid State Physics, Vol. 21, pp. 2917-2929, 1988.
16. Yang, C., Su, X., Wang, J., Cao, X., Wang, S., and Zhang, L., “Facile Microwave-Assisted Hydrothermal Synthesis of Varied-Shaped CuO Nanoparticles and Their Gas Sensing Properties” Sensor and Actuators B Chemical, Vol. 185, pp.159-165, 2013.
17. Jayaprakash, J., Srinivasan, N., Chandrasekaran, P., and Girija, E., “Synthesis and Characterizat Ion of Cluster of Grapes Like Pure and Zinc-Doped CuO Nanoparticles by Sol-Gel Method”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 136, pp. 1803-1806, 2015.
18. Yang, C., Xiao, F., Wang, J., and Su, X., “Synthesis and Microwave Modification of Cuo Nanoparticles: Crystallinity and Morphological Variations, Catalysis and Gas Sensing”, Colloid and Interface Science, Vol. 435, pp. 34-42, 2014.
19. Martı´nez-Ruiz, A., and Alonso-Nun˜ez, G., “New Synthesis of Cu2O and Cu Nanoparticles on Multi-Wall Carbon Nanotubes”, Materials Research Bulletin, Vol. 4, pp.1492-1496, 2008.
20. Jeong, B. S., Woo, K., Kim, D., Lim, S., Kim, J. S., Shin, H., Xia, Y., and Moon, J., “Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing”, Advance Function of Material, Vol. 18, pp. 679-686, 2008.
21. Ramazani, M., Farahmandjou, M., and Firoozabadi, T. P., “Effect of Nitric Acid on Particle Morphology of the Nano-TiO2”, International Journal of Nanoscience and Nanotechnology, Vol. 11, pp. 115-122, 2015.
22. Wang, W., Guo, M., Lu, D., Wang, W., and Fu, Z., “Effect of HNO3Concentration on the Morphologies and Properties of Bi2WO6Photocatalyst Synthesized by a Hydrothermal Method”, Crystals, Vol. 6, pp. 75-86, 2016.
23. Nurdin, I., Johan, M. R., Yaacob, I. I., and Ang, B. C., “Effect of Nitric Acid Concentrations on Synthesis and Stability of Maghemite Nanoparticles Suspension”, The Scientific World Journal, Vol. 2014, pp. 1-6, 2014.
24. Martin, M. N., Allen, A. J., MacCuspie, R. I., and Hackley, V. A., “Dissolution, Agglomerate Morphology, and Stability Limits of Protein-Coated Silver Nanoparticles”, Langmuir, Vol 30, pp. 11442-11452, 2014.
25. Senevirathnal, T. C., Hewathilake, H. P. T. S., Wijayasinghe, H. W. M. A. C., Balasooriya, N. W. B., and Pitawala, H. M. T. G. A., “Structural Modification of Sri Lankan Vein Graphite using Microwave Irradiation Technique”, Journal of Geological Society of Sri Lanka, Vol. 19, pp. 11-16, 2018.
26. Bagheri, R., Karimzadeh, F., Kermanpur, A., and Kharaziha, M., “The Novel Immobilization of G-Quadruplex Aptamer on Cu Deposited Surface using Electrochemical Method”, Materials Letters, Vol. 282, p. 128703, 2021.
27. Patil, C. M., Santhanam, K. S. V., and Kandlikar, S. G., “Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling”, International Journal of Heat and Mass Transfer, Vol. 79, pp. 989-1001, 2014.
28. Cao, X., Xu, L., Wang, C., Li, S., Wu, D., Shi, Y., Liu, F., and Xue, X., “Electrochemical Behavior and Electrodeposition of SnCoating from Choline Chloride-Urea DeepEutectic Solvents”, Coatings, Vol. 10, pp. 1154-1164, 2020.
29. Mohammadia, H., Aminea, A., Rhazia, M. E., and Brett, C. M. A., “Copper-Modified Gold Electrode Specific for Monosaccharide Detection Use in Amperometric Determination of Phenylmercury Based Oninvertase Enzyme Inhibition”, Talanta, Vol. 62, pp. 951-958, 2004.
30. Domg, R., Harouna, M., Tcheka, C., Tchatchueng, J. B., Tsafam, A., Domga, N. K., and Dikdim, D., “Batch Equilibrium, Kinetic and Thermodynamic Studies on Adsorption of Methylene Blue in Aqueous Solution onto Activated Carbon Prepared”, Chemistry Journal, Vol. 1, pp. 172-181, 2015.

تحت نظارت وف ایرانی