مطالعه تحولات ساختاری لایه نازک کربن آمورف انباشت شده بر آلیاژ نیکل- مس با تغییر دمای انباشت و انرژی پرتوی یون

نویسندگان

1 پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، 836-14395، تهران، ایران

2 پژوهشکده مواد پیشرفته و انرژی‌های نو، سازمان پژوهش‌های علمی و صنعتی ایران، 33535111، تهران، ایران

3 پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، 836-14395‌، تهران، ایران

چکیده

در تحقیق حاضر لایه نازک کربن آمورف با استفاده از روش کندوپاش پرتوی یونی بر شیشه و آلیاژ نیکل- مس ایجاد و همبستگی تحولات ساختاری کربن آمورف با انرژی جنبشی اتم‌های کربن در مرحله تشکیل پیوند با اتم‌های دیگر بررسی شده است. تأثیر جنس زیرلایه، دمای انباشت و انرژی پرتوی یون بر تحولات ساختاری لایه‌های انباشت شده نیز بررسی شده است. نتایج بررسی طیف‏‌سنجی رامان نشان‌دهنده تحولات ساختاری لایه نازک کربن آمورف به‌سمت کربن شبه الماسی (DLC) با افزایش دمای انباشت تا 100 درجه سانتی‌گراد و انرژی پرتوی یون از دو به پنج کیلوالکترون ولت است. اندازه خوشه‌های گرافیتی با پیوند sp 2 کوچک‌تر از یک نانومتر در لایه‌‏های کربن آمورف انباشت شده بر آلیاژ نیکل- مس است. نتایج محاسبه تنش پسماند با استفاده از دستگاه پراش پرتوی ایکس (XRD) نشان‏‌دهنده روند کاهشی میزان تنش پسماند کششی لایه نازک کربن آمورف با افزایش انرژی پرتوی یون است. 

کلیدواژه‌ها


عنوان مقاله [English]

STUDY OF STRUCTURAL EVOLUTION OF AMORPHOUS CARBON FILMS ON Ni-Cu ALLOY AND ITS CORRELATION WITH DEPOSITION TEMPERATURE AND ION BEAM ENERGY

نویسندگان [English]

  • E. Mohagheghpour 1
  • R. Gholamipour 2
  • M. Rajabi 2
  • M. Mojtahedzadeh Larijani 3
1 Radiation Applications Research School, Nuclear Sciences and Technology Research Institute, 14395836, Tehran, Iran
2 Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), 33535111, Tehran, Iran
3 Physics and Accelerators Research school, Nuclear Sciences and Technology Research Institute, 14395836, Tehran, Iran
چکیده [English]

In this study, the amorphous carbon thin films were deposited by ion beam sputtering deposition method on the glass and Ni–Cu alloy substrates. The structural evolution of amorphous carbon and its correlation with the kinetic energy of carbon atoms during the growth of thin film was investigated. The effect of substrate material, deposition temperature, and ion beam energy on the structural changes were examined. Raman spectroscopy indicated a structural transition from amorphous carbon to diamond-like amorphous carbon (DLC) due to an increase in deposition temperature up to 100°C and ion beam energy from 2 keV to 5 keV. The size of graphite crystallites with sp < sup>2 bonds (La) were smaller than 1 nm in the amorphous carbon layers deposited on Ni-Cu alloy. The results of residual stress calculation using X-ray diffractometer (XRD) analysis revealed a decreasing trend in the tensile residual stress values of the amorphous carbon thin films with increasing the ion beam energy.

کلیدواژه‌ها [English]

  • thin film
  • Amorphous Carbon
  • Ion Beam Energy
  • Deposition Temperature
  • Structural Evolution
1. Alaluf, M., Appelbaum, J., Klibanov, L., Brinker, D., Scheiman, D., and Croitoru, N., “Amorphous Diamond-Like Carbon Films-a hard Anti-Reflecting Coating for Silicon Solar Cells”, Thin Solid Films, Vol. 256, pp. 1-3, 1995.
2. Klyui, N., Litovchenko, V., Rozhin, A., Dikusha, V., Kittler, M., and Seifert, W., “Silicon Solar Cells with Antireflection Diamond-Like Carbon and Silicon Carbide Films”, Solar Energy Materials and Solar Cells, Vol. 72, pp. 597-603, 2002.
3. Robertson, J., “Diamond-Like Amorphous Carbon”, Materials Science and Engineering: R: Reports, Vol. 37, pp. 129-281, 2002.
4. Bai, L., Zhang, G., Wu, Z., Wang, J., and Yan, P., “Effect of Different Ion Beam Energy on Properties of Amorphous Carbon Film Fabricated by Ion Beam Sputtering Deposition (IBSD)”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 269, pp. 1871-1877, 2011.
5. Waseem, B., Alam, S., Irfan, M., Shahid, M., Soomro, B. D., Hashim, S., and Iqbal, R., “Optimization and Characterization of Adhesion Properties of DLC Coatings on Different Substrates”, IOP Conference Series: Materials Science and Engineering, Vol. 60, p. 012054, 2014.
6. Sodhi, R. N., “Application of Surface Analytical and Modification Techniques to Biomaterial Research”, Journal of Electron Spectroscopy and Related Phenomena, Vol. 81, pp. 269-284, 1996.
7. Meigooni, A. S., Yoe-Sein, M. M., Al-Otoom, A. Y., and Sowards, K. T., “Determination of the Dosimetric Characteristics of Inter Source125 Iodine Brachytherapy Source”, Applied Radiation and Isotopes, Vol. 56, pp. 589-599, 2002.
8. Parsai, E., Gautam, B., and Shvydka, D., “Evaluation of a Novel Thermobrachytherapy Seed for Concurrent Administration of Brachytherapy and Magnetically Mediated Hyperthermia in Treatment of Solid Tumors”, Journal of Biomedical Physics and Engineering, Vol. 1, pp. 5-16, 2011.
9. Warrell, G., Shvydka, D., and Parsai, E. I., “Use of Novel Thermobrachytherapy Seeds for Realistic Prostate Seed Implant Treatments”, Medical Physics, Vol. 43, pp. 6033-6048, 2016.
10. Gautam, B., Parsai, E. I., Shvydka, D., Feldmeier, J., and Subramanian, M., “Dosimetric and Thermal Properties of a Newly Developed Thermobrachytherapy Seed with Ferromagnetic Core for Treatment of Solid Tumors”, Medical Physics, Vol. 39, pp. 1980-1990, 2012.
11. Alexandrou, I., Papworth, A., Rafferty, B., Amaratunga, G., Kiely, C., and Brown, L., “Calculation of the Electronic Structure of Carbon Films using Electron Energy Loss Spectroscopy”, Ultramicroscopy, Vol. 90, pp. 39-45, 2001.
12. Manova, D., Gerlach, J. W., and Mändl, S., “Thin Film Deposition using Energetic Ions”, Materials, Vol. 3, pp. 4109-4141, 2010.
13. Corbella, C., Vives, M., Pinyol, A., Bertran, E., Canal, C., Polo, M. C., and Andújar, J. L., “Preparation of Metal (W, Mo, Nb, Ti) Containing a-C:H Films by Reactive Magnetron Sputtering”, Surface and Coatings Technology, Vol. 177-178, pp. 409-414, 2004.
14. Choi, W. S., Hong, B., Jeon, Y., Kim, K., and Yi, J., “Synthesis and Characterization of Diamond-Like Carbon Protective ar Coating”, Journal of the Korean Physical Society, Vol. 45, pp. 864-867, 2004.
15. Mohagheghpour, E., Rajabi, M., Gholamipour, R., Larijani, M. M., and Sheibani, S., “Ion Beam Energy Dependence of Surface and Structural Properties of Amorphous Carbon Films Deposited by IBSD Method on Ni-Cu Alloy”, Journal of Materials Research, Vol. 32, pp. 1258-1266, 2017.
16. Ferrari, A. C., and Robertson, J., “Interpretation of Raman Spectra of Disordered and Amorphous Carbon”, Physical Review B, Vol. 61, p. 14095, 2000.
17. Cappelli, E., Orlando, S., Mattei, G., Zoffoli, S., and Ascarelli, P., “SEM and Raman Investigation of RF Plasma Assisted Pulsed Laser Deposited Carbon Films”, Applied Surface Science, Vol. 197, pp. 452-457, 2002.
18. Paulmier, T., Bell, J. M., and Fredericks, P. M., “Deposition of Nano-Crystalline Graphite Films by Cathodic Plasma Electrolysis”, Thin Solid Films, Vol. 515, pp. 2926-2934, 2007.
19. Sui, J., Gao, Z., Cai, W., and Zhang, Z., “Corrosion behavior of NiTi Alloys Coated with Diamond-Like Carbon (DLC) Fabricated by Plasma Immersion Ion Implantation and Deposition”, Materials Science and Engineering: A, Vol. 452, pp. 518-523, 2007.
20. Ferrari, A. C., “Determination of Bonding in Diamond-Like Carbon by Raman Spectroscopy”, Diamond and Related Materials, Vol. 11, pp. 053-061, 2002.
21. Kitabatake, M., and Wasa, K., “Growth of Diamond at Room Temperature by an Ion‐Beam Sputter Deposition under Hydrogen‐Ion Bombardment”, Journal of Applied Physics, Vol. 58, pp. 1693-1695, 1985.
22. Dai, H., Cheng, X., Wang, C., Xue, Y., and Chen, Z., “Structural, Optical and Electrical Properties of Amorphous Carbon Films Deposited by Pulsed Unbalanced Magnetron Sputtering”, Optik, Vol. 126, pp. 861-864, 2015.
23. Fyta, M. G., Mathioudakis, C., Kopidakis, G., and Kelires, P. C., “Structure, Stability, and Stress Properties of Amorphous and Nanostructured Carbon Films”, Thin Solid Films, Vol. 482, pp. 56-62, 2005.
24. Donnet, C., and Erdemir, A., Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, Springer Science & Business Media, 2007.
25. Weissmantel, C., Erler, H., and Reisse, G., “Ion Beam Techniques for thin and Thick Film Deposition”, Surface Science, Vol. 86, pp. 207-221, 1979.
26. Tang, Y., Li, Y., Yang, Q., and Hirose, A., “Characterization of Hydrogenated Amorphous Carbon Thin Films by End-Hall Ion Beam Deposition”, Applied Surface Science, Vol. 257, pp. 4699-4705, 2011.
27. Shin, J. -K., Lee, C. S., Lee, K. -R., and Eun, K. Y “Effect of Residual Stress on the Raman-Spectrum Analysis of Tetrahedral Amorphous Carbon Films”, Applied Physics Letters, Vol. 78, pp. 631-633, 2001.
28. Zhang, S., Xie, H., Zeng, X., and Hing, P., “Residual Stress Characterization of Diamond-Like Carbon Coatings by an X-Ray Diffraction Method”, Surface and Coatings Technology, Vol. 122, pp. 219-224, 1999.
29. Pauleau, Y., “Generation and Evolution of Residual Stresses in Physical Vapour-Deposited Thin Films”, Vacuum, Vol. 61, pp. 175-181, 2001.

تحت نظارت وف ایرانی