مروری بر حسگرهای گازی مقاومتی بر پایه اکسیدهای فلزی نیمه‌رسانا

نوع مقاله : مقاله‌ مروری

نویسندگان

دانشکده مهندسی و علم مواد، دانشگاه صنعتی شیراز، شیراز

چکیده

امروزه صنعتی شدن جوامع و بهبود کیفیت زندگی با مشکلاتی همچون آلودگی هوا و آلودگی‌های زیست‌محیطی همراه شده است؛ بنابراین، حسگرهای گازی به‌طور گسترده‌ای به‌منظور تشخیص گازها و بخارهای سمی و خطرناک در کاربردهای مختلف مورد استفاده قرار می‌گیرند. از بین حسگرهای گازی مختلف، حسگرهای گازی مقاومتی بر پایه اکسید‌های فلزی نیمه‌رسانا که اساس کار آن‌ها بر مبنای تغییرات مقاومت حسگر در حضور گاز هدف است، از جمله محبوب‌ترین انواع حسگرهای گازی هستند. این حسگرها دارای پاسخ حسگری مناسب، زمان پاسخ و زمان بازیابی کوتاه، پایداری فیزیکی و شیمیایی بالا و قیمت پایین هستند. در این مقاله مروری حسگرهای گازی مقاومتی بر پایه اکسیدهای فلزی نیمه‌رسانا مورد بحث و بررسی قرار می‌گیرند. جنبه‌های مختلف ساخت، سازوکار تشخیص گاز، روش‌های بهبود خواص حسگری و روش‌های کاهش مصرف انرژی در این حسگرها توضیح داده می‌شوند. این مقاله به‌گونه‌ای تنظیم و نوشته شده است که مفاهیم پایه و اساسی را برای علاقه‌مندان ورود به این حوزه فراهم کند.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of Resistive Gas Sensors Based on Semiconducting Metal Oxides

نویسندگان [English]

  • A. Mirzaei
  • H. Shokrollahi
Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

Nowadays, the industrialization of societies and the improvement of the quality of life are associated with issues such as air pollution and environmental pollution. Hence, gas sensors are widely used to detect toxic and hazardous gases and vapors in various applications. Among the different gas sensors, resistive gas sensors based on semiconducting metal oxides, its work is based on changes in sensor resistance in the presence of the target gas, are among the most popular types of gas sensors. These sensors have high sensing response, short response and recovery time, high physical and chemical stability and low price. In this review article, resistive gas sensors based on semiconducting metal oxides are discussed. Various aspects of fabrication, gas sensing mechanism, strategies of improving sensing properties, and methods of reducing energy consumption in these sensors are explained. This article is organized and written in such a way as to provide the basic concepts for those interested in entering this field.

کلیدواژه‌ها [English]

  • Gas sensor
  • Gas sensing mechanism
  • Metal oxide
  • Semiconductor
  • Toxic gas
  1. Li, R., Cai, M., Qian, Z. M., Wang, X., Zhang, Z., Wang, C., Wang, Y., Arnold, L. D., Howard, S. W., Li, H., and Lin, H., “Ambient Air Pollution, Lifestyle, and Genetic Predisposition Associated with Type 2 Diabetes: Findings from a National Prospective Cohort Study”, Science of Total Environment, Vol. 849, p. 157838, 2022.
  2. Wang, H., Yuan, B., Hao, R., Zhao, Y., and Wang, X., “A Critical Review on the Method of Simultaneous Removal of Multi-Air-Pollutant in Flue Gas”, Chemical Engineering Journal, Vol. 378, p. 122155, 2019.
  3. Yang, Z., Leng, T., Pan, L., and Wang, X., “Paying for Pollution: Air Quality and Executive Compensation”, Pacific-Basin Finance Journal, Vol. 74, p. 101823, 2022.
  4. Brauer, M., Casadei, B., Harrington, R. A., Kovacs, R., Sliwa, K., and WHF Air Pollution Expert Group, “Taking a Stand Against Air Pollution-The Impact on Cardiovascular Disease”, Circulation, Vol. 143, No. 14, pp. e800–e804, 2021.
  5. Zhang, Z., Xue, T., and Jin, X., “Effects of Meteorological Conditions and Air Pollution on Covid-19 Transmission: Evidence From 219 Chinese Cities”, Science of Total Environment, Vol. 741, p. 140244, 2020.
  6. Feng, R., and Fang, X., “China’s Pathways to Synchronize the Emission Reductions of Air Pollutants and Greenhouse Gases: Pros and cons”, Resources, Conservation and Recycling., Vol. 184, p. 106392, 2022.
  7. Kamal, M. S., Razzak, S. A., and Hossain, M. M., “Catalytic Oxidation of Volatile Organic Compounds (VOCs) – A Review”, Atmospheric Environment, Vol. 140, pp. 117–134, 2016.
  8. Liu, L. J., Liu, L. C., and Liang, Q. M., “Common Footprints of the Greenhouse Gases and Air Pollutants in China”, Journal of Cleaner Production, Vol. 293, p. 125991, 2021.
  9. Sovacool, B. K., Griffiths, S., Kim, J., and Bazilian, M., “Climate Change and Industrial F-Gases: A Critical and Systematic Review of Developments, Sociotechnical Systems and Policy Options for Reducing Synthetic Greenhouse Gas Emissions”, Renewable and Sustainable Energy Reviews, Vol. 141, p. 110759, 2021.
  10. Ahmad, R., Majhi, S. M., Zhang, X., Swager, T. M., and Salama, K. N., “Recent Progress and Perspectives of Gas Sensors Based on Vertically Oriented ZnO Nanomaterials”, Advances in Colloid and Interface Science , Vol. 270, pp. 1–27, 2019.
  11. Falsafi, F., Hashemi, B., Mirzaei, A., Fazio, E., Neri, F., Donato, N., Leonardi, S. G., and Neri, G., “Sm-Doped Cobalt Ferrite Nanoparticles: A Novel Sensing Material for Conductometric Hydrogen Leak Sensor”, Ceramics International, Vol. 43, No. 1, pp. 1029–1037, 2017.
  12. Pifferi, S., and Menini, A., “Odorant Detection and Discrimination in the Olfactory System”, Sensors and Microsystems, Vol. 91, pp. 3–18, 2011.
  13. Pollock, C., “The Canary in the Coal Mine”, Journal of Avian Medicine and Surgury, Vol. 30, No. 4, pp. 386–391, 2016.
  14. Kirchner,P., Reisert, S., and Schöning, M. J., “Calorimetric Gas Sensors for Hydrogen Peroxide Monitoring in Aseptic Food Processes”, Gas Sensing Fundamentals, Kohl, C.-D., and Wagner, T., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 279–309, 2014.
  15. Brattain, W. H., and Bardeen, J., “Surface Properties of Germanium”, The Bell System Technical Journal, Vol. 32, No. 1, pp. 1–41, 1953.
  16. Ihokura, J., and Watson, K., The Stannic Oxide Gas Sensor: Principles and Applications, 1st ed., CRC Press, 1994.
  17. Seiyama, T., Kato, A., Fujiishi, K., and Nagatani, M., “A New Detector for Gaseous Components Using Semiconductive Thin Films”, Analytical Chemistry, Vol. 34, No. 11, pp. 1502–1503, 1962.
  18. Taguchi, N., Gas-detecting device. U. S. Patent 3,631, pp 436, 1971.
  19. White, L. T., Hazardous gas monitoring: a guide for semiconductor and other hazardous occupancies. William Andrew.
  20. Barsan, N., Koziej, D., and Weimar, U., “Metal Oxide-Based Gas Sensor Research: How to?”, Sensors and Actuators B:Chemical , Vol. 121, No. 1, pp. 18–35, 2007.
  21. Chiu, S.-W., and Tang, K.-T., “Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review”, Sensors, Vol. 13, No. 10, pp. 14214–14247, 2013.
  22. Yang, D., Gopal, R. A., Lkhagvaa, T., and Choi, D., “Metal Oxide Gas Sensors for Exhaled Breath Analysis: A Review”, Measurement Science and Technology, Vol. 32, No. 10, p.102004, 2021.
  23. Zhang, W., Yuan, T., Wang, X., Cheng, Z., and Xu, J., “Coal Mine Gases Sensors with Dual Selectivity at Variable Temperatures Based on a W18O49 Ultra-Fine Nanowires/Pd@Au Bimetallic Nanoparticles Composite”, Sensors and Actuators B: Chemical, Vol. 354, p. 131004, 2022.
  24. Galstyan, V., Bhandari, M. P., Sberveglieri, V., Sberveglieri, G., and Comini, E., “Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging”, Chemosensors, Vol. 6, No. 2, p. 16. 2018.
  25. Fine, G. F., Cavanagh, L. M., Afonja, A., and Binions, R., “Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring”, Sensors, Vol. 10, No. 6, pp. 5469–5502, 2010.
  26. Tille, T., “Automotive Suitability of Air Quality Gas Sensors”, Sensors and Actuators B: Chemical, Vol. 170, pp. 40–44, 2012.
  27. Hodgkinson, J., and Tatam, R. P., “Optical Gas Sensing: A Review”, Measurement Science and Technology, Vol. 24, No. 1, p. 12004, 2012.
  28. Park, C. O., Fergus, J. W., Miura, N., Park, J., and Choi, A., “Solid-State Electrochemical Gas Sensors”, Ionics (Kiel)., Vol. 15, No. 3, pp. 261–284, 2009.
  29. Jakubik, W. P., “Surface Acoustic Wave-Based Gas Sensors”, Thin Solid Films, Vol. 520, No. 3, pp. 986–993, 2011.
  30. Surya, S. G., Bhanoth, S., Majhi, S. M., More, Y. D., Teja, V. M., and Chappanda, K. N., “A Silver Nanoparticle-Anchored Uio-66(Zr) Metal–Organic Framework (Mof)-Based Capacitive H2s Gas Sensor”, CrystEngComm, Vol. 21, No. 47, pp. 7303–7312, 2019.
  31. Mahdavifar, A., Aguilar, R., Peng, Z., Hesketh, P. J., Findlay, M., Stetter, J. R., and Hunter, G. W., “Simulation and Fabrication of an Ultra-Low Power Miniature Microbridge Thermal Conductivity Gas Sensor”, Journal of the Electrochemical Society, Vol. 161, No. 4, pp. B55-B61, 2014.
  32. Mirzaei, A., Leonardi, S. G., and Neri, G., “Detection of Hazardous Volatile Organic Compounds (VOCs) By Metal Oxide Nanostructures-Based Gas Sensors: A Review”, Ceramics International, Vol. 42, No. 14, pp. 15119–15141, 2016.
  33. Suematsu, K., Shin, Y., Hua, Z., Yoshida, K., Yuasa, M., Kida, T., and Shimanoe, K., “Nanoparticle Cluster Gas Sensor: Controlled Clustering of SnO2 Nanoparticles for Highly Sensitive Toluene Detection”, ACS Applied Materials & Interfaces, Vol. 6, No. 7, pp. 5319–5326, 2014.
  34. Suematsu, K., Harano, W., Yamasaki, S., Watanabe, K., and Shimanoe, K., “One-Trillionth Level Toluene Detection Using a Dual-Designed Semiconductor Gas Sensor: Material and Sensor-Driven Designs”, ACS Applied Electronic Materials, Vol. 2, No. 12, pp. 4122–4126, 2020.
  35. Barsan, N., and Schierbaum, K. Gas sensors based on conducting metal oxides. 1st Elsevier; 2019 [chapter 4]
  36. Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B., and Habchi, R., “A Review on Flexible Gas Sensors: From Materials to Devices”, Sensors and Actuators A: Physical, Vol. 284, pp. 209–231, 2018.
  37. Zheng, X., and Cheng, H., “Flexible and Stretchable Metal Oxide Gas Sensors for Healthcare”, Science China Technological Sciences, Vol. 62, No. 2, pp. 209–223, 2019.
  38. Fioravanti, A., and Carotta, M. C., “Year 2020: A Snapshot of the Last Progress in Flexible Printed Gas Sensors”, Sci., Vol. 10, No. 5, p. 1741, 2020.
  39. Mirzaei, A., and Neri, G., “Microwave-Assisted Synthesis of Metal Oxide Nanostructures for Gas Sensing Application: A Review”, Sensors and Actuators, B: Chemical, 237, pp. 749-775, 2016.
  40. Kim, J.-H., Lee, J.-H., Mirzaei, A., Kim, H. W., and Kim, S. S., “SnO2 (n)-NiO (p) Composite Nanowebs: Gas Sensing Properties and Sensing Mechanisms”, Sensors and Actuators B: Chemical, Vol. 258, pp. 204–214, 2018.
  41. Mirzaei, A., Janghorban, K., Hashemi, B., Bonavita, A., Bonyani, M., Leonardi, S. G., and Neri, G., “Synthesis, Characterization and Gas Sensing Properties of Ag@Α-Fe2o3 Core–Shell Nanocomposites”, Nanomaterials, Vol. 5, No. 2, pp. 737–749, 2015.
  42. Kwon, Y. J., Mirzaei, A., Kang, S. Y., Choi, M. S., Bang, J. H., Kim, S. S., and Kim, H. W., “Synthesis, Characterization and Gas Sensing Properties of ZnO-Decorated MWCNTs”, Applied Surface Science, Vol. 413, pp. 242–252, 2017.
  43. Kim, J.-Y., Lee, J.-H., Kim, J.-H., Mirzaei, A., Kim, H. W., and Kim, S. S., “Realization of H2S Sensing by Pd-Functionalized Networked Cuo Nanowires in Self-Heating Mode”, Sensors and Actuators B: Chemical, Vol. 299, p. 126965, 2019.
  44. Yousefi, H. R., Hashemi, B., Mirzaei, A., Roshan, H., and Sheikhi, M. H., “Effect of Ag on the ZnO Nanoparticles Properties as an Ethanol Vapor Sensor”, Matererial Science in Semiconductor Processes, Vol. 117, p. 105172, 2020.
  45. Mirzaei, A., Kim, S. S., and Kim, H. W., “Resistance-based H2S Gas Sensors Using Metal Oxide Nanostructures: A Review of Recent Advances”, Journal of Hazardous Materials, Vol. 357, pp. 314–331, 2018.
  46. Amiri, V., Roshan, H., Mirzaei, A., Neri, G., and Ayesh, A. I., “Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review”, Sensors, Vol. 20, No. 11, p. 3096, 2020.
  47. Mirzaei, A., Park, S., Sun, G.-J., Kheel, H., Lee, C., and Lee, S., “Fe2O3/Co3O4 Composite Nanoparticle Ethanol Sensor”, Journal of Korean Physical Society, Vol. 69, No. 3, pp. 373–380, 2016.
  48. Mirzaei, A., Lee, J. H., Majhi, S. M., Weber, M., Bechelany, M., Kim, H. W., and Kim, S. S., “Resistive Gas Sensors Based on Metal-Oxide Nanowires”, Journal of Applied Physics, Vol. 126, No. 24, p. 241102, 2019.
  49. Kim, J. H., Lee, J. H., Park, Y., Kim, J. Y., Mirzaei, A., Kim, H. W. and Kim, S. S., “Toluene- and Benzene-Selective Gas Sensors Based on Pt- and Pd-Functionalized Zno Nanowires in Self-Heating Mode”, Sensors and Actuators B:Chemical, Vol. 294, pp. 78–88, 2019.
  50. Smulko, J. M., Trawka, M., Granqvist, C. G., Ionescu, R., Annanouch, F., Llobet, E., and Kish, L. B., “New Approaches for Improving Selectivity and Sensitivity of Resistive Gas Sensors: A Review”, Sensor Review, Vol. 35, No. 4, pp. 340–347, 2015.
  51. Mirzaei, A., Hashemi, B., and Janghorban, K., “α-Fe2O3 Based Nanomaterials as Gas Sensors”, Journal of Materials Science: Materials in Electronics, Vol. 27, No. 4. pp. 3109–3144, 2016.
  52. Korotcenkov G., and Cho, B. K., “Instability of Metal Oxide-Based Conductometric Gas Sensors and Approaches to Stability Improvement (Short Survey)”, Sensors and Actuators B: Chemical, 156, No. 2, pp. 527–538, 2011.
  53. Majhi, S. M., Mirzaei, A., Kim, H. W., Kim, S. S., and Kim, T. W., “Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review”, Nano Energy, Vol. 79, p. 105369, 2021.
  54. Korotcenkov, G., and Cho, B. K., “Engineering Approaches to Improvement of Conductometric Gas Sensor Parameters. Part 2: Decrease of Dissipated (Consumable) Power and Improvement Stability and Reliability”, Sensors and Actuators B:Chemical, Vol. 198, pp. 316–341, 2014.
  55. Zhang, J., Liu, X., Neri, G., and Pinna, N., “Nanostructured Materials for Room-Temperature Gas Sensors”, Advanced Materials, Vol. 28, No. 5, pp. 795–831, 2016.
  56. Choi, M. S., Bang, J. H., Mirzaei, A., Oum, W., Na, H. G., Jin, C., Kim, S. S., and Kim, H. W., “Promotional Effects of ZnO-Branching and Au-Functionalization on the Surface of SnO2 Nanowires for NO2 Sensing”, Journal of Alloys and Compounds, Vol. 786, pp. 27–39, 2019.
  57. Kumar, V., Mirzaei, A., Bonyani, M., Kim, K.-H., Kim, H. W., and Kim, S. S., “Advances in Electrospun Nanofiber Fabrication for Polyaniline (Pani)-Based Chemoresistive Sensors for Gaseous Ammonia”, TrAC Trends in Analytical Chemistry, Vol. 129, p. 115938, 2020.
  58. Tian, W., Liu, X., and Yu, W., “Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review”, Applied Science, Vol. 8, No. 7, p. 1118, 2018.
  59. Li, Q., Li, Y., and Zeng, W., “Preparation and Application of 2D MXene-Based Gas Sensors: A Review”, Chemosensors, Vol. 9, No. 8, p. 225, 2021.
  60. Kumar, S., Pavelyev, V., Mishra, P., Tripathi, N., Sharma, P., and Calle, F., “A review on 2D Transition Metal Di-Chalcogenides and Metal Oxide Nanostructures Based NO2 Gas Sensors”, Materials Science in SemiconductorProcessing, Vol. 107, p. 104865, 2020.
  61. Harraz, F. A., “Porous Silicon Chemical Sensors And Biosensors: A Review”, Sensors and Actuators B:Chemical, Vol. 202, pp. 897–912, 2014.
  62. Yao, M.-S., Li, W.-H., and Xu, G., “Metal–Organic Frameworks and Their Derivatives for Electrically-Transduced Gas Sensors”, Coordination Chemistry Reviews, Vol. 426, p. 213479, 2021.
  63. Ramgir, N. S., Yang, Y., and Zacharias, M., “Nanowire-Based Sensors”, Small, Vol. 6, No. 16, pp. 1705–1722, 2010.
  64. Yamazoe, N., Sakai, G., and Shimanoe, K., “Oxide Semiconductor Gas Sensors”, Catalysis Surveys from Asia, Vol. 7, No. 1, pp. 63–75, 2003.
  65. Kim, H.-J., and Lee, J.-H., “Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview”, Sensors and Actuators B:Chemical, Vol. 192, pp. 607–627, 2014.
  66. Xu, J. M., and Cheng, J. P., “The Advances of Co3O4 as Gas Sensing Materials: A review”, Journal of Alloys and Compounds, Vol. 686, pp. 753–768, 2016.
  67. Mirzaei, A., Ansari, H. R., Shahbaz, M., Kim, J.-Y., Kim, H. W., and Kim, S. S., “Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies”, Chemosensors, Vol. 10, No. 7, p. 289, 2022.
  68. Mirzaei, A., Kim, J.-H., Kim, H. W., and Kim, S. S., “Resistive-Based Gas Sensors for Detection of Benzene, Toluene and Xylene (Btx) Gases: A Review”, Journal of Material Chemistry C, Vol. 6, No. 16, pp. 4342–4370, 2018.
  69. Barsan, N., and Weimar, U., “Conduction Model of Metal Oxide Gas Sensors”, Journal of Electroceramics, Vol. 7, No. 3, pp. 143–167, 2001.
  70. Kim, J.-H., Mirzaei, A., Kim, H. W., and Kim, S. S., “Extremely Sensitive and Selective Sub-Ppm CO Detection by the Synergistic Effect of Au Nanoparticles and Core–Shell Nanowires”, Sensors and Actuators B:Chemical, Vol. 249, pp. 177–188, 2017.
  71. Choi, M. S., Na, H. G., Bang, J. H., Mirzaei, A., Han, S., Lee, H. Y., Kim, S. S., Kim, H. W., and Jin, C., “SnO2 Nanowires Decorated by Insulating Amorphous Carbon Layers for Improved Room-Temperature NO2 Sensing”, Sensors and Actuators B:Chemical, Vol. 326, p. 128801, 2021.
  72. Mirzaei, A., Park, S., Sun, G. J., Kheel, H., and Lee, C., “CO gas Sensing Properties of In4Sn3O12 and TeO2 Composite Nanoparticle Sensors”, Journal of Hazardous Matererials, Vol. 15, No. 305, pp. 130-138, 2016.
  73. Navale, S., Shahbaz, M., Majhi, S. M., Mirzaei, A., Kim, H. W., and Kim, S. S., “CuxO Nanostructure-Based Gas Sensors for H2S Detection: An Overview”, Chemosensors, Vol. 9, No. 6, p. 127, 2021.
  74. Kim, J. H., Mirzaei, A., Zheng, Y., Lee, J. H., Kim, J. Y., Kim, H. W., and Kim, S. S., “Enhancement of H2S Sensing Performance of p-CuO Nanofibers by Loading p-Reduced Graphene Oxide Nanosheets”, Sensors and Actuators B:Chemical, Vol. 281, pp. 453–461, 2019.
  75. Gao, X., and Zhang, T., “An Overview: Facet-Dependent Metal Oxide Semiconductor Gas Sensors”, Sensors and Actuators B:Chemical, Vol. 277, pp. 604–633, 2018.
  76. Korotcenkov, G., “The Role of Morphology and Crystallographic Structure of Metal Oxides in Response of Conductometric-Type Gas Sensors”, Matererials Science and Engineering R: Reports, Vol. 61, No. 1–6, pp. 1–39, 2008.
  77. Lee, J. H., “Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview”, Sensors and Actuators B:Chemical, Vol. 140, No. 1. pp. 319–336, 2009.
  78. Zhang, S., Liu, C., Zhang, G., Chen, Y., Shang, F., Xia, Q., and Yang, W., “Full Review: The Progress and Developing Trends of Nanosheet-Based Sensing Applications”, Coordination Chemistry Reviews, Vol. 433, p. 213742, 2021.
  79. Chen, X., Wong, C. K., Yuan, C. A., and Zhang, G., “Nanowire-Based Gas Sensors”, Sensors and Actuators B:Chemical, Vol. 177, pp. 178–195, 2013.
  80. Majhi, S. M., Mirzaei, A., Kim, H. W., and Kim, S. S., “Reduced Graphene Oxide (RGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview”, Sensors, Vol. 21, No. 4, p. 1352, 2021.
  81. Rezaie, S., Bafghi, Z. G., and Manavizadeh, N., “Carbon-Doped ZnO Nanotube-Based Highly Effective Hydrogen Gas Sensor: A First-Principles Study”, International Journal of Hydrogen Energy, Vol. 45, No. 27, pp. 14174–14182, 2020.
  82. Kim, H., Pak, Y., Jeong, Y., Kim, W., Kim, J., and Jung, G. Y., “Amorphous Pd-assisted H2 Detection Of ZnO Nanorod Gas Sensor with Enhanced Sensitivity and Stability”, Sensors and Actuators B:Chemical, Vol. 262, pp. 460–468, 2018.
  83. Xue, J., Wu, T., Dai, Y., and Xia, Y., “Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications”, Chemical Reviews, Vol. 119, No. 8, pp. 5298–5415, 2019.
  84. Korotcenkov, G., “Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming”, Nanomaterials, Vol. 11, No. 6, p. 1544, 2021.
  85. Korotcenkov, G., “Electrospun Metal Oxide Manofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations”, Nanomaterials, Vol. 11, No. 6, p. 1555, 2021.
  86. Mercante, L. A., Andre, R. S., Mattoso, L. H. C., and Correa, D. S., “Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing”, ACS Applied Nano Materials, Vol. 2, No. 7, pp. 4026–4042, 2019.
  87. Keerthana, S., and Rathnakannan, K., “Hierarchical ZnO/CuO Nanostructures for Room Temperature Detection of Carbon Dioxide”, Journal of Alloys and Compounds, Vol. 897, p. 162988, 2022.
  88. Agarwal, S., Kumar, S., Agrawal, H., Moinuddin, M. G., Kumar, M., Sharma, S. K., and Awasthi, K., “An Efficient Hydrogen Gas Sensor Based on Hierarchical Ag/ZnO Hollow Microstructures”, Sensors and Actuators B:Chemical, Vol. 346, p. 130510, 2021.
  89. Li, S., Zhang, Y., Han, L., Li, X., and Xu, Y., “Hierarchical Kiwifruit-Like ZnO/ZnFe2O4 Heterostructure for High-Sensitive Triethylamine Gaseous Sensor”, Sensors and Actuators B:Chemical, Vol. 344, p. 130251, 2021.
  90. Jiang, B., Lu, J., Han, W., Sun, Y., Wang, Y., Cheng, P., Zhang, H., Wang, C., and Lu, G., “Hierarchical Mesoporous Zinc Oxide Microspheres for Ethanol Gas Sensor”, Sensors and Actuators B:Chemical, Vol. 357, p. 131333, 2022.
  91. Wu, H., Yu, J., Li, Z., Yao, G., Cao, R., Li, X., Zhu, H., He, A., and Tang, Z., “Microhotplate Gas Sensors Incorporated with Al Electrodes and 3d Hierarchical Structured Pdo/Pdo2-Sno2:Sb Materials For Sensitive VOC Detection”, Sensors and Actuators B:Chemical, Vol. 329, p. 128984, 2021.
  92. Fan, H., Zheng, X., Shen, Q., Wang, W., and Dong, W., “Hydrothermal Synthesis and Their Ethanol Gas Sensing Performance of 3-Dimensional Hierarchical Nano Pt/SnO2”, Journal of Alloys and Compounds, Vol. 909, p. 164693, 2022.
  93. Zhen, Y. X., Song, B. Y., Liu, W. X., Ye, J. X., Zhang, X. F., Deng, Z. P., Huo, L. H., and Gao, S., “Ultra-High Response and Low Temperature NO2 Sensor Based on Mesoporous SnO2 Hierarchical Microtubes Synthesized by Biotemplating Process”, Sensors and Actuators B:Chemical, Vol. 363, p. 131852, 2022.
  94. Yu, H., Zhang, Y., Dong, L., and Wang, J., “Fabricating Pod-Like SnO2 Hierarchical Micro-Nanostructures for Enhanced Acetone Gas Detection”, Materials Science in Semiconductor Processing, Vol. 121, p. 105451, 2021.
  95. Xu, D., Chen, Y., Qiu, T., Qi, S., Zhang, L., Yin, M., Ge, K., Wei, X., Tian, X., Wang, P., and Li, M., “Hierarchical Mesoporous SnO2 Nanotube Templated by Staphylococcus Aureus Through Electrospinning for Highly Sensitive Detection of Triethylamine”, Materials Science in Semiconductor Processing, Vol. 136, p. 106129, 2021.
  96. Choi, M. S., Kim, M. Y., Mirzaei, A., Kim, H. S., Kim, S. I., Baek, S. H., Chun, D. W., Jin, C., and Lee, K. H., “Selective, Sensitive, and Stable NO2 Gas Sensor Based on Porous ZnO Nanosheets”, Applied Surface Science, Vol. 568, p. 150910, 2021.
  97. Wang, J., Hu, C., Xia, Y., and Zhang, B., “Mesoporous ZnO Nanosheets with Rich Surface Oxygen Vacancies For UV-Activated Methane Gas Sensing at Room Temperature”, Sensors and Actuators B:Chemical, Vol. 333, p. 129547, 2021.
  98. Van Duy, L., Nguyet, T. T., Hung, C. M., Le, D. T. T., Van Duy, N., Hoa, N. D., Biasioli, F., Tonezzer, M., and Di Natale, C., “Ultrasensitive NO2 Gas Sensing Performance of Two Dimensional ZnO Nanomaterials: Nanosheets and Nanoplates”, Ceramics International, Vol. 47, No. 20, pp. 28811–28820,
  99. Wang, X., Li, H., Huang, D., Wang, Y., Fan, W., Cai, L., Wang, W., Chen, Y., Han, G., and Song, Y., “Effect of Co-Doping on the Performance of Nanosheet-Like ZnO Ethanol Gas Sensor”, Journal of Matererials Science: Materrials in Electronics, Vol. 32, No. 22, pp. 26529–26538, 2021.
  100. Li, Q., Chen, D., Miao, J., Lin, S., Yu, Z., Cui, D., Yang, Z., and Chen, X., “Highly Sensitive Sensor Based on Ordered Porous ZnO Nanosheets for Ethanol Detecting Application”, Sensors and Actuators B:Chemical, Vol. 326, p. 128952, 2021.
  101. Guo, L., Shen, Z., Ma, C., Ma, C., Wang, J., and Yuan, T., “Gas Sensor Based on MOFs-Derived Au-Loaded SnO2 Nanosheets for Enhanced Acetone Detection”, Journal of Alloys and Compounds, Vol. 906, p. 164375, 2022.
  102. Lou, C., Huang, Q., Li, Z., Lei, G., Liu, X., and Zhang, J., “Fe2O3-Sensitized SnO2 Nanosheets via Atomic Layer Deposition for Sensitive Formaldehyde Detection”, Sensors and Actuators B:Chemical, Vol. 345, p. 130429, 2021.
  103. Ma, Z., Yang, K., Xiao, C., and Jia, L., “Electrospun Bi-doped SnO2 Porous Nanosheets for Highly Sensitive Nitric Oxide Detection”, Journal of Hazardous Matererials, Vol. 416, p. 126118, 2021.
  104. Sun, Z., Zhang, J., Zhang, B., An, X., Zhang, S., Wang, C., Bala, H., and Zhang, Z., “Preparation and TEA Gas Sensing Properties of Pt-Modified Honeycomb-Like Porous SnO2 Nanosheets”, Materials Research  Bulletin, Vol. 157, p. 112014, 2023.
  105. Kim, J.-H., Mirzaei, A., Bang, J. H., Kim, H. W., and Kim, S. S., “Achievement of Self-Heated Sensing of Hazardous Gases by WS2 (Core)-SnO2 (Shell) Nanosheets”, Journal of Hazardous Matererials, Vol. 412, p. 125196, 2021.
  106. Lu, S., Zhang, Y., Liu, J., Li, H. Y., Hu, Z., Luo, X., Gao, N., Zhang, B., Jiang, J., Zhong, A., and Luo, J., “Sensitive H2 Gas Sensors Based on SnO2 Nanowires”, Sensors and Actuators B:Chemical, Vol. 345, p. 130334, 2021.
  107. Park, H., Kim, J. H., Vivod, D., Kim, S., Mirzaei, A., Zahn, D., Park, C., Kim, S. S., and Halik, M., “Chemical-Recognition-Driven Selectivity of SnO2-Nanowire-Based Gas Sensors”, Nano Today, Vol. 40, p. 101265, 2021.
  108. Sayegh, S., Lee, J. H., Yang, D. H., Weber, M., Iatsunskyi, I., Coy, E., Razzouk, A., Kim, S. S., and Bechelany, M., “Humidity-Resistant Gas Sensors Based on SnO2 Nanowires Coated with a Porous Alumina Nanomembrane by Molecular Layer Deposition”, Sensors and Actuators B:Chemical, Vol. 344, p. 130302, 2021.
  109. Hoa, T. T. N., Le, D. T. T., Van Toan, N., Van Duy, N., Hung, C. M., Van Hieu, N., and Hoa, N. D., “Highly Selective H2s Gas Sensor Based on Wo3-Coated SnO2 Nanowires”, Matererial Today Communication, Vol. 26, p. 102094, 2021.
  110. Zhao, S., Shen, Y., Maboudian, R., Carraro, C., Han, C., Liu, W., and Wei, D., “Facile Synthesis of ZnO-SnO2 Hetero-Structured Nanowires for High-Performance NO2 Sensing Application”, Sensors and Actuators B:Chemical, Vol. 333, p. 129613, 2021.
  111. Kim, J. H., Park, H., Mirzaei, A., Hahm, M. G., Ahn, S., Halik, M., Park, C., and Kim, S. S., “How Femtosecond Laser Irradiation Can Affect the Gas Sensing Behavior of SnO2 Nanowires Toward Reducing and Oxidizing Gases”, Sensors and Actuators B:Chemical, Vol. 342, p. 130036, 2021.
  112. Zhao, S., Shen, Y., Xia, Y., Pan, A., Li, Z., Carraro, C., and Maboudian, R., “Synthesis and Gas Sensing Properties Of NiO/ZnO Heterostructured Nanowires”, Journal of Alloys and Compounds, Vol. 877, p. 160189, 2021.
  113. Zhao, S., Shen, Y., Li, A., Chen, Y., Gao, S., Liu, W., and Wei, D., “Effects of Rare Earth Elements Doping on Gas Sensing Properties of ZnO Nanowires”, Ceramics International, Vol. 47, No. 17, pp. 24218–24226, 2021.
  114. Rafiee, Z., Roshan, H., and Sheikhi, M. H., “Low Concentration Ethanol Sensor Based on Graphene/ZnO Nanowires”, Ceramics International, Vol. 47, No. 4, pp. 5311–5317, 2021.
  115. Ramgir, N. S., Goyal, C. P., Goyal, D., Patil, S. J., Ikeda, H., Ponnusamy, S., Muthe, K. P., and Debnath, A. K., “NO2 Sensor Based on Al Modified ZnO Nanowires”, Materials Science in Semiconductor  Processing, Vol. 134, p. 106027, 2021.
  116. Ocak, Y. S., Zeggar, M. L., Genişel, M. F., Uzun, N. U., and Aida, M. S., “CO2 Sensing Behavior of Vertically Aligned Si Nanowire/Zno Structures”, Materials Science in Semiconductor  Processing, Vol. 134, p. 106028, 2021.
  117. Hung, C. M., Phuong, H. V., Van Thinh, V., Thang, N. T., Hanh, N. H., Dich, N. Q., Van Duy, N., Van Hieu, N., and Hoa, N. D., “Au doped ZnO/SnO2 Composite Nanofibers for Enhanced H2S Gas Sensing Performance”, Sensors and Actuators A: Physical., Vol. 317, p. 112454, 2021.
  118. Cai, L. X., Chen, L., Sun, X. Q., Geng, J., Liu, C. C., Wang, Y., and Guo, Z., “Ultra-Sensitive Triethylamine Gas Sensors Based On Polyoxometalate-Assisted Synthesis of ZnWO4/ZnO Hetero-Structured Nanofibers”, Sensors and Actuators B:Chemical, Vol. 370, p. 132422, 2022.
  119. Guo, J., Li, W., Zhao, X., Hu, H., Wang, M., Luo, Y., Xie, D., Zhang, Y., and Zhu, H., “Highly Sensitive, Selective, Flexible and Scalable Room-Temperature NO2 Gas Sensor Based on Hollow SnO2/ZnO Nanofibers”, Molecules, Vol. 26, No. 21, p. 6475, 2021.
  120. Han, C., Li, X., Liu, Y., Li, X., Shao, C., Ri, J., Ma, J., and Liu, Y., “Construction of In2O3/ZnO Yolk-Shell Nanofibers for Room-Temperature NO2 Detection Under UV Illumination”, Journal of Hazardous Matererials, Vol. 403, p. 124093, 2021.
  121. Guo, L., Zhang, B., Yang, X., Wang, Y., Wang, G., and Zhang, Z., “Sensing Platform of PdO-ZnO-In2O3 Nanofibers Using MOF Templated Catalysts for Triethylamine Detection”, Sensors and Actuators B:Chemical, Vol. 343, p. 130126, 2021.
  122. Sun, Y., Wang, J., Du, H., Li, X., Wang, C., and Hou, T., “Formaldehyde Gas Sensors Based on SnO2/ZSM-5 Zeolite Composite Nanofibers”, Journal of Alloys and Compounds, Vol. 868, p. 159140, 2021.
  123. Chen, L., Song, Y., Liu, W., Dong, H., Wang, D., Liu, J., Liu, Q., and Chen, X., “MOF-Based Nanoscale Pt Catalyst Decorated SnO2 Porous Nanofibers for Acetone Gas Detection”, Journal of Alloys and Compounds, Vol. 893, p. 162322, 2022.
  124. Hu, K., Wang, F., Shen, Z., Liu, H., and Xiong, J., “Ternary Heterojunctions Synthesis and Sensing Mechanism of Pd/ZnO–SnO2 Hollow Nanofibers with Enhanced H2 Gas Sensing Properties”, Journal of Alloys and Compounds, Vol. 850, p. 156663, 2021.
  125. Yang, C., Liu, B., Yang, Y., Wang, T., Wang, T., Yu, H., and Dong, X., “Indium Element - Induced Oxygen Vacancies and Polycrystalline Structure Enabled SnO2 Nanofibers for Highly Sensitive Detection of NOx”, Sensors and Actuators B:Chemical, Vol. 362, p. 131754, 2022.
  126. Bai, X., Lv, H., Liu, Z., Chen, J., Wang, J., Sun, B., Zhang, Y., Wang, R., and Shi, K., “Thin-Layered MoS2 Nanoflakes Vertically Grown on SnO2 Nanotubes as Highly Effective Room-Temperature NO2 Gas Sensor”, Journal of Hazardous Matererials, Vol. 416, p. 125830, 2021.
  127. Wang, L., Ma, S., Li, J., Wu, A., Luo, D., Yang, T., Cao, P., Ma, N., and Cai, Y., “Mo-Doped SnO2 Nanotubes Sensor with Abundant Oxygen Vacancies for Ethanol Detection”, Sensors and Actuators B:Chemical, Vol. 347, p. 130642, 2021.
  128. Liu, A., Lv, S., Zhao, L., Liu, F., Wang, J., You, R., Yang, Z., He, J., Jiang, L., Wang, C., and Yan, X., “Room Temperature Flexible NH3 Sensor Based on Polyaniline Coated Rh-Doped SnO2 Hollow Nanotubes”, Sensors and Actuators B:Chemical, Vol. 330, p. 129313, 2021.
  129. Wang, L., Ma, S., Xu, X., Li, J., Yang, T., Cao, P., Yun, P., Wang, S., and Han, T., “Oxygen Vacancy-Based Tb-Doped SnO2 Nanotubes as an Ultra-Sensitive Sensor for Ethanol Detection”, Sensors and Actuators B:Chemical, Vol. 344, p. 130111, 2021.
  130. Zhang, J., Ma, S., Wang, B., and Pei, S., “Preparation of Composite SnO2/CuO Nanotubes by Electrospinning and Excellent Gas Selectivity to Ethanol”, Sensors and Actuators A:Physical, Vol. 332, p. 113090, 2021.
  131. Liu, Y., Zhang, J., Li, G., Liu, J., Liang, Q., Wang, H., Zhu, Y., Gao, J., and Lu, H., “In2O3–ZnO Nanotubes for the Sensitive and Selective Detection of Ppb-Level NO2 Under UV Irradiation at Room Temperature”, Sensors and Actuators B:Chemical, Vol. 355, p. 131322, 2022.
  132. Cao, P., Yang, Z., Navale, S. T., Han, S., Liu, X., Liu, W., Lu, Y., Stadler, F. J., and Zhu, D., “Ethanol Sensing Behavior of Pd-Nanoparticles Decorated ZnO-Nanorod Based Chemiresistive Gas Sensors”, Sensors and Actuators B:Chemical, Vol. 298, p. 126850, 2019.
  133. Wang, J., Fan, S., Xia, Y., Yang, C., and Komarneni, S., “Room-Temperature Gas Sensors Based on ZnO Nanorod/Au Hybrids: Visible-Light-Modulated Dual Selectivity to NO2 and NH3”, Journal of Hazardous Matererials, Vol. 381, p. 120919, 2020.
  134. Gao, R., Cheng, X., Gao, S., Zhang, X., Xu, Y., Zhao, H., and Huo, L., “Highly Selective Detection of Saturated Vapors of Abused Drugs by ZnO Nanorod Bundles Gas Sensor”, Applied Surface Science, Vol. 485, pp. 266–273, 2019.
  135. Liu, F., Huang, G., Wang, X., Xie, X., Xu, G., Lu, G., He, X., Tian, J., and Cui, H., “High Response and Selectivity of Single Crystalline ZnO Nanorods Modified By In2O3 Nanoparticles for n-Butanol Gas Sensing”, Sensors and Actuators B:Chemical, Vol. 277, pp. 144–151, 2018.
  136. Zhou, T., Sang, Y., Wang, X., Wu, C., Zeng, D., and Xie, C., “Pore Size Dependent Gas-Sensing Selectivity Based on ZnO@ZIF Nanorod Arrays”, Sensors and Actuators B:Chemical, Vol. 258, pp. 1099–1106, 2018.
  137. Huang, J., Zhou, J., Liu, Z., Li, X., Geng, Y., Tian, X., Du, Y., and Qian, Z., “Enhanced Acetone-Sensing Properties to ppb Detection Level Using Au/Pd-doped ZnO Nanorod”, Sensors and Actuators B:Chemical, Vol. 310, p. 127129, 2020.
  138. Jagadale, S. B., Patil, V. L., Vanalakar, S. A., Patil, P. S., and Deshmukh, H. P., “Preparation, Characterization of 1D ZnO Nanorods and Their Gas Sensing Properties”, Ceramics International, Vol. 44, No. 3, pp. 3333–3340, 2018.
  139. Hsu, C.-L., Jhang, B.-Y., Kao, C., and Hsueh, T.-J., “UV-Illumination and Au-Nanoparticles Enhanced Gas Sensing of p-Type Na-Doped ZnO Nanowires Operating at Room Temperature”, Sensors and Actuators B:Chemical, Vol. 274, pp. 565–574, 2018.
  140. Luo, Y., Ly, A., Lahem, D., Zhang, C., and Debliquy, M., “A Novel Low-Concentration Isopropanol Gas Sensor Based on Fe-Doped ZnO Nanoneedles and Its Gas Sensing Mechanism”, Journal of Matererials Science, Vol. 56, No. 4, pp. 3230–3245, 2021.
  141. Tsai, Y. T., Chang, S. J., Ji, L. W., Hsiao, Y. J., Tang, I. T., Lu, H. Y., and Chu, Y. L., “High Sensitivity of NO Gas Sensors Based On Novel Ag-Doped ZnO Nanoflowers Enhanced with a Uv Light-Emitting Diode”, ACS Omega, Vol. 3, No. 10, pp. 13798–13807, 2018.
  142. Jabeen, M., Iqbal, A., Kumar, R. V., and Ahmed, M., “Pd-Doped Zinc Oxide Nanostructures for Liquefied Petroleum Gas Detection at Low Temperature”, Sensing and Bio-Sensing Research, Vol. 25, p. 100293, 2019.
  143. Fois, M., Cox, T., Ratcliffe, N., and de Lacy Costello, B., “Rare Earth Doped Metal Oxide Sensor for the Multimodal Detection of Volatile Organic Compounds (VOCs)”, Sensors and Actuators B:Chemical, Vol. 330, p. 129264, 2021.
  144. Degler, D., Weimar, U., and Barsan, N., “Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials”, ACS Sensors, Vol. 4, No. 9, pp. 2228–2249, 2019.
  145. Wang, C.-N., Li, Y.-L., Gong, F.-L., Zhang, Y.-H., Fang, S.-M., and Zhang, H.-L., “Advances in Doped ZnO Nanostructures for Gas Sensor”, The Chemival Record, Vol. 20, No. 12, pp. 1553–1567, 2020.
  146. Liu, A., Liu, T., Fu, H., Yin, X., Liu, K., and Yu, J., “Enhanced Performance of Zn and Co Co-Doped MoO3 Nanosheets as Gas Sensor for n-Butylamine”, Ceramics International, Vol. 48, No. 22, pp. 32986-32993, 2022.
  147. Lupan, O., Ababii, N., Santos-Carballal, D., Terasa, M. I., Magariu, N., Zappa, D., Comini, E., Pauporte, T., Siebert, L., Faupel, F., and Vahl, A., “Tailoring the Selectivity of Ultralow-Power Heterojunction Gas Sensors by Noble Metal Nanoparticle Functionalization”, Nano Energy, Vol. 88, p. 106241, 2021.
  148. Singhal, A. V., Charaya, H., and Lahiri, I., “Noble Metal Decorated Graphene-Based Gas Sensors and Their Fabrication: A Review”, Critical Reviwes in Solid State Matererials Science, Vol. 42, No. 6, pp. 499-526, 2017.
  149. Dinh, T., Dobo, Z., and Kovacs, H., “Phytomining of Noble Metals – A review,” Chemosphere, Vol. 286, p. 131805, 2022.
  150. Bang, J. H., Mirzaei, A., Han, S., Lee, H. Y., Shin, K. Y., Kim, S. S., and Kim, H. W., “Realization of Low-Temperature and Selective NO2 Sensing of SnO2 Nanowires via Synergistic Effects of Pt Decoration And Bi2O3 Branching”, Ceramics International, Vol. 47, No. 4, pp. 5099–5111, 2021.
  151. Yan, H., Song, P., Zhang, S., Zhang, J., Yang, Z., and Wang, Q., “A Low Temperature Gas Sensor Based on Au-Loaded MoS2 Hierarchical Nanostructures for Detecting Ammonia”, Ceramics International, Vol. 42, No. 7, pp. 9327–9331, 2016.
  152. Kim, J.-H., Mirzaei, A., Kim, H. W., and Kim, S. S., “Low Power-Consumption CO Gas Sensors Based on Au-Functionalized SnO2-ZnO Core-Shell Nanowires”, Sensors and Actuators B:Chemical, Vol. 267, pp. 597–607, 2018.
  153. Navale, S., Shahbaz, M., Mirzaei, A., Kim, S. S., and Kim, H. W., “Effect of Ag Addition on the Gas-Sensing Properties of Nanostructured Resistive-Based Gas Sensors: An Overview”, Sensors, Vol. 21, No. 19, p. 6454, 2021.
  154. Guo, J., Zhang, J., Gong, H., Ju, D., and Cao, B., “Au Nanoparticle-Functionalized 3D SnO2 Microstructures for High Performance Gas Sensor”, Sensors and Actuators B:Chemical, Vol. 226, pp. 266–272, 2016.
  155. Mirzaei, A., Yousefi, H. R., Falsafi, F., Bonyani, M., Lee, J. H., Kim, J. H., Kim, H. W., and Kim, S. S., “An Overview on How Pd on Resistive-Based Nanomaterial Gas Sensors Can Enhance Response Toward Hydrogen Gas”, International Journal of Hydrogen Energy, Vol. 44, No. 36, pp. 20552–20571, 2019.
  156. Hanh, N. H., Van Duy, L., Hung, C. M., Xuan, C. T., Van Duy, N., and Hoa, N. D., “High-Performance Acetone Gas Sensor Based on Pt–Zn2SnO4 Hollow Octahedra for Diabetic Diagnosis”, Journal of Alloys and Compounds, Vol. 886, p. 161284, 2021.
  157. Li, Z., Lou, C., Lei, G., Lu, G., Pan, H., Liu, X., and Zhang, J., “Atomic Layer Deposition of Rh/ZnO Nanostructures for Anti-Humidity Detection of Trimethylamine”, Sensors and Actuators B:Chemical, Vol. 355, p. 131347, 2022.
  158. Kim, J.-H., and Kim, S. S., “Realization of Ppb-scale Toluene-Sensing Abilities with Pt-Functionalized SnO2–ZnO Core–Shell Nanowires”, ACS Applied Matererails & Interfaces, Vol. 7, No. 31, pp. 17199–17208, 2015.
  159. Wusiman, M., and Taghipour, F., “Methods and Mechanisms of Gas Sensor Selectivity”, Critical Reviews in Solid State Matererial Science, Vol. 47, No. 3, pp. 416–435, 2022.
  160. Grisel, R. J. H., and Nieuwenhuys, B. E., “Selective Oxidation of CO Over Supported Au Catalysts”, Journal of Catalysis, Vol. 199, No. 1, pp. 48–59, 2001.
  161. Korotcenkov, G., Brinzari, V., and Cho, B. K., “Conductometric Gas Sensors Based on Metal Oxides Modified with Gold Nanoparticles: A Review”, Microchimica Acta, Vol. 183, No. 3, pp. 1033–1054, 2016.
  162. Kim, J.-H., Sakaguchi, I., Hishita, S., Suzuki, T. T., and Saito, N., “Au-Decorated 1D SnO2 Nanowire/2D WS2 Nanosheet Composite for CO Gas Sensing at Room Temperature in Self-Heating Mode”, Chemosensors, Vol. 10, No. 4, p. 132, 2022.
  163. Mirzaei, A., Janghorban, K., Hashemi, B., and Neri, G., “Metal-core@Metal Oxide-Shell Nanomaterials For Gas-Sensing Applications: A Review”, Journal of Nanoparticle Research, Vol. 17, No. 9. pp. 1-36, 2015.
  164. Li, W., Wu, X., Han, N., Chen, J., Tang, W., and Chen, Y., “Core-Shell Au@ZnO Nanoparticles Derived from Au@MOF and Their Sub-ppm Level Acetone Gas-Sensing Performance”, Powder Technology, Vol. 304, pp. 241–247, 2016.
  165. Choi, M. S., Mirzaei, A., Bang, J. H., Oum, W., Kwon, Y. J., Kim, J. H., Choi, S. W., Kim, S. S., and Kim, H. W., “Selective H2S-Sensing Performance of Si Nanowires Through the Formation of ZnO Shells with Au Functionalization”, Sensors and Actuators B:Chemical, Vol. 289, pp. 1–14, 2019.
  166. Lee, J. H., Mirzaei, A., Kim, J. Y., Kim, J. H., Kim, H. W., and Kim, S. S., “Optimization of the Surface Coverage of Metal Nanoparticles on Nanowires Gas Sensors to Achieve the Optimal Sensing Performance”, Sensors and Actuators B:Chemical, Vol. 302, p. 127196, 2020.
  167. Kim, J.-H., Mirzaei, A., Kim, H. W., and Kim, S. S., “Improving the Hydrogen Sensing Properties of SnO2 Nanowire-Based Conductometric Sensors by Pd-Decoration”, Sensors and Actuators B:Chemical, Vol. 285, pp. 358–367, 2019.
  168. Bonyani, M., Zebarjad, S. M., Janghorban, K., Kim, J.-Y., Kim, H. W., and Kim, S. S., “Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 gas”, Chemosensors, Vol. 10, No. 10, 2022.
  169. Li, G., Cheng, Z., Xiang, Q., Yan, L., Wang, X., and Xu, J., “Bimetal PdAu Decorated SnO2 Nanosheets Based Gas Sensor with Temperature-Dependent Dual Selectivity for Detecting Formaldehyde and Acetone”, Sensors and Actuators B:Chemical. 283, pp.590-601, 2019.
  170. Li, S., Cheng, M., Liu, G., Zhao, L., Zhang, B., Gao, Y., Lu, H., Wang, H., Zhao, J., Liu, F., and Yan, X., “High-Response and Low-Temperature Nitrogen Dioxide Gas Sensor Based on Gold-Loaded Mesoporous Indium Trioxide”, Journal of Colloid and Interface Science524, pp.368-378, 2018.
  171. Liu, W., Xie, Y., Chen, T., Lu, Q., Rehman, S. U., and Zhu, L., “Rationally Designed Mesoporous In2O3 Nanofibers Functionalized Pt Catalysts for High-Performance Acetone Gas Sensors”, Sensors and Actuators B:Chemical, 298, p.126871, 2019.
  172. Yang, S., Lei, G., Xu, H., Lan, Z., Wang, Z., and Gu, H., “Metal Oxide Based Heterojunctions for Gas Sensors: A Review”, Nanomaterials, Vol. 11, No. 4, p. 1026, 2021.
  173. Miller, D. R., Akbar, S. A., and Morris, P. A., “Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review”, Sensors and Actuators, B: Chemical, Vol. 204. pp. 250–272, 2014.
  174. Liu, Y., Xiao, S., and Du, K., “Chemiresistive Gas Sensors Based on Hollow Heterojunction: A Review”, Advanced Matererials & Interfaces, Vol. 8, No. 12, p. 2002122, 2021.
  175. Li, S., Zhang, Y., Han, L., Li, X., and Xu, Y., “Highly Sensitive and Selective Triethylamine Gas Sensor Based on Hierarchical Radial CeO2/ZnO N-N Heterojunction”, Sensors and Actuators B:Chemical, Vol. 367, p. 132031, 2022.
  176. Gao, H., Guo, J., Li, Y., Xie, C., Li, X., Liu, L., Chen, Y., Sun, P., Liu, F., Yan, X., and Liu, F., “Highly Selective and Sensitive Xylene Gas Sensor Fabricated from NiO/NiCr2O4 p-p Nanoparticles”, Sensors and Actuators B:Chemical, Vol. 284, pp. 305–315, 2019.
  177. Yin, X.-T., Li, J., Dastan, D., Zhou, W.-D., Garmestani, H., and Alamgir, F. M., “Ultra-high Selectivity of H2 Over CO with a p-n Nanojunction Based Gas Sensors and Its Mechanism”, Sensors and Actuators B:Chemical, Vol. 319, p. 128330, 2020.
  178. Si, S., Li, C., Wang, X., Peng, Q., and Li, Y., “Fe2O3/ZnO Core-Shell Nanorods for Gas Sensors”, Sensors and Actuators B:Chemical, Vol. 119, No. 1, pp. 52–56, 2006.
  179. Tan, W., Tan, J., Fan, L., Yu, Z., Qian, J., and Huang, X., “Fe2O3-Loaded NiO Nanosheets for Fast Response/Recovery and High Response Gas Sensor”, Sensors and Actuators B:Chemical, Vol. 256, pp. 282–293, 2018.
  180. Doan, T. L. H., Kim, J. Y., Lee, J. H., Nguyen, L. H. T., Nguyen, H. T. T., Pham, A. T. T., Le, T. B. N., Mirzaei, A., Phan, T. B., and Kim, S. S., “Facile Synthesis of Metal-Organic Framework-Derived Zno/Cuo Nanocomposites for Highly Sensitive and Selective H2S Gas Sensing”, Sensors and Actuators B:Chemical, Vol. 349, p. 130741, 2021.
  181. Dong, S., Jin, X., Wei, J., and Wu, H., “Electrospun ZnSnO3/ZnO Composite Nanofibers and Its Ethanol-Sensitive Properties”, Metals (Basel)., Vol. 12, No. 2, p. 196, 2022.
  182. Han, T.-H., Bak, S.-Y., Kim, S., Lee, S. H., Han, Y.-J., and Yi, M., “Decoration of CuO NWs Gas Sensor With ZnO NPs for Improving NO2 Sensing Characteristics”, Sensors, Vol. 21, No. 6, p. 2103, 2021.
  183. Salehi, A., “A Highly Sensitive Self Heated SnO2 Carbon Monoxide Sensor”, Sensors and Actuators B:Chemical, Vol. 96, No. 1, pp. 88–93, 2003.
  184. Yun, J., Ahn, J.-H., Moon, D.-I., Choi, Y.-K., and Park, I., “Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection”, ACS Applied Matererials & Interfaces, Vol. 11, No. 45, pp. 42349–42357, 2019.
  185. Ansari, M. Z., and Cho, C., “An Analytical Model of Joule Heating in Piezoresistive Microcantilevers”, Sensors, Vol. 10, No. 11, pp. 9668–9686, 2010.
  186. Ngoc, T. M., Van Duy, N., Duc Hoa, N., Manh Hung, C., Nguyen, H., and Van Hieu, N., “Effective Design and Fabrication of Low-Power-Consumption Self-Heated SnO2 Nanowire Sensors for Reducing Gases”, Sensors and Actuators B:Chemical, Vol. 295, pp. 144–152, 2019.
  187. Lee, J. H., Mirzaei, A., Kim, J. H., Kim, J. Y., Nasriddinov, A. F., Rumyantseva, M. N., Kim, H. W., and Kim, S. S., “Gas-Sensing Behaviors of TiO2-Layer-Modified SnO2 Quantum Dots in Self-Heating Mode and Effects of the TiO2 Layer”, Sensors and Actuators B:Chemical, Vol. 310, p. 127870, 2020.
  188. Kim, J.-H., Sakaguchi, I., Hishita, S., Ohsawa, T., Suzuki, T. T., and Saito, N., “Ru-Implanted WS2 Nanosheet Gas Sensors to Enhance Sensing Performance Towards CO Gas in Self-Heating Mode”, Sensors and Actuators B:Chemical, Vol. 370, p. 132454, 2022.
  189. Wang, J., Shen, H., Xia, Y., and Komarneni, S., “Light-Activated Room-Temperature Gas Sensors Based on Metal Oxide Nanostructures: A Review on Recent Advances”, Ceramics International, Vol. 47, No. 6, pp. 7353–7368, 2021.
  190. Kumar, R., Liu, X., Zhang, J., and Kumar, M., “Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials”, Nano-Micro Letters, Vol. 12, No. 1, p. 164, 2020.
  191. Espid, E., and Taghipour, F., “UV-LED Photo-Activated Chemical Gas Sensors: A review”, Rev. Solid State Mater. Sci., Vol. 42, No. 5, pp. 416–432, 2017.
  192. Goodarzi, M. T., and Ranjbar, M., “Atmospheric Flame Vapor Deposition of WO3 Thin Films for Hydrogen Detection with Enhanced Sensing Characteristics”, Ceramics International, Vol. 46, No. 13, pp. 21248-21255, 2020.
  193. Kalhori, H., Ranjbar, M., Farrokhpour, H., and Salamati, H., “Fabrication of Pd/WO3 Colloidal Nanoparticles by Laser Ablation in Liquid of Tungsten for Optical Hydrogen Detection”, Journal of Laser Applications, 31, No. 3, p. 032018, 2019.
  194. Ranjbar, M., Fardindoost, S., and Mahdavi, S. A., “Palladium Nanoparticle Deposition onto the WO3 Surface Through Hydrogen Reduction of PdCl2: Characterization and Gasochromic Properties”,  Energy Materials and Solar Cells, Vol. 95, No. 8, pp. 2335-2340, 2011.
  195. Shafieyan, A. R., Ranjbar, M., and Kameli, P., “Localized Surface Plasmon Resonance H2 Detection by MoO3 Colloidal Nanoparticles Fabricated by the Flame Synthesis Method”, International  Journal of  Hydrog Energy, Vol. 44, No. 33, pp. 18628-18638, 2019.
  196. Aray, A., Ranjbar, M., Shokoufi, N., and Morshedi, A., “Plasmonic Fiber Optic Hydrogen Sensor Using Oxygen Defects in Nanostructured Molybdenum Trioxide Film”, Optics Letters, Vol. 44, No. 19, pp. 4773-4776, 2019.
  197. Zhou, Q., Xu, L., Kan, Z., Yang, L., Chang, Z., Dong, B., Bai, X., Lu, G., and Song, H., “A Multi-Platform Sensor for Selective and Sensitive H2S Monitoring: Three-Dimensional Macroporous ZnO Encapsulated by MOFs with Small Pt Nanoparticles”, Journal of Hazardous Matererials, Vol. 426, p. 128075, 2022.
  198. Drobek, M., Kim, J.-H., Bechelany, M., Vallicari, C., Julbe, A., and Kim, S. S., “MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity”, ACS Applied Matererials & Interfaces, Vol. 8, No. 13, pp. 8323–8328, 2016.
  199. Kim, E., Lee, S., Kim, J. H., Kim, C., Byun, Y. T., Kim, H. S., and Lee, T., “Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays”, Sensors, Vol. 12, No. 12, pp. 16262–16273, 2012.
  200. Niu, G., and Wang, F., “A Review of MEMS-Based Metal Oxide Semiconductors Gas Sensor in Mainland China”, Micromechanics Microengineering, Vol. 32, No. 5, p. 54003, 2022.
  201. Kumar, R., Goel, N., Hojamberdiev, M., and Kumar, M., “Transition Metal Dichalcogenides-Based Flexible Gas Sensors”, Sensors and Actuators A; Physical., Vol. 303, p. 111875, 2020.

ارتقاء امنیت وب با وف ایرانی