سنتز و مشخصه‌یابی نانوذرات فریت کبالت آلاییده شده با گادولنیم و کلسیم پوشش‌دهی شده با کیتوسان و پلی‌اتیلن گلیکول

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

چکیده: نانوذرات مغناطیسی فریت کبالت به علت خواص مطلوب در گستره وسیعی از کاربردها از قبیل کاربردهای پزشکی مورد توجه قرار گرفته‌اند. اگر چه عموماً نانوذرات مغناطیسی برای این کاربرد‌ها مناسب هستند، اما به علت سمّی بودن، استفاده از آن‌ها با محدودیت‌هایی همراه است. بنابراین با اعمال یک لایه پوشش زیست سازگار سعی می‌شود تا آسیب‌های ناشی از سمیّت این دسته از نانوذرات به حداقل برسد. در این راستا در پژوهش حاضر سعی شد تا ضمن تولید نانوذرات فریت کبالت آلاییده شده با گادولنیم و کلسیم به روش سل-ژل احتراقی، با پلیمرهای کیتوسان و پلی‌اتیلن گلیکول تحت پوشش‌دهی قرار گیرد. آزمون پراش پرتو ایکس به همراه آنالیز ریتولد تشکیل نانوذرات فریت کبالت خالص با متوسط اندازه بلورک‌های 27 نانومتر را تأیید کرد. همچنین نتایج آنالیزهای وزن‌سنجی حرارتی و طیف مادون قرمز تبدیل فوریه به‌خوبی مؤید تشکیل لایه پوشش روی سطح نانوذرات پوشش‌دهی شده با کیتوسان و پلی‌ایتلن گلیکول بودند. بررسی خواص مغناطیسی نانوذرات نشان داد که اعمال لایه پوشش خواص مغناطیسی را تحت تأثیر قرار می‌دهد به‌گونه‌ای که مغناطش اشباع (Ms) از 67/93 به emu/g 74/61 افزایش می‌یابد. این در حالی است که نیروی پسماندزدای مغناطیسی (Hc) در نتیجه فرایند پوشش‌دهی از 982/86 به Oe 908/13 کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and Characterization of Ca2+ and Gd3+ Doped Cobalt Ferrite Nanoparticles Coated with Chitosan and Polyethylene Glycol

نویسندگان [English]

  • Sh. Soltani-Nezhad
  • S. Hasani
  • A.R. Mashreghi
Department of Mining and Metallurgical Engineering, Yazd University, 89195-741 Yazd, Iran
چکیده [English]

Magnetic cobalt ferrite nanoparticles have been widely employed in various applications, such as medical applications due to their desirable characteristics. Although generally magnetic nanoparticles are appropriate for such employments, their applications are restricted due to their toxic properties. Hence, it is tried to decrease the toxic damages by using a biocompatible coating layer. For this purpose, in the present study, it was tried to synthesize Ca2+ and Gd3+ doped cobalt ferrite nanoparticles by the sol-gel auto-combustion method and coat them with chitosan and polyethylene glycol polymers. X-ray diffraction (XRD) pattern along with the Rietveld refinement results confirmed the formation of pure cobalt ferrite nanoparticles with the average crystallite size of 27 nm. Moreover, the results of both thermogravimetry (TGA) test and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of a coated layer of chitosan and polyethylene glycol polymers on the surface of nanoparticles. Magnetic characterization of the synthesized nanoparticles indicated that the formation of the coating layer can affect the magnetic properties, so that the saturation magnetization (Ms) increased from 67.93 to 74.61 emu/g. However, the coercivity (Hc) decreased from 982.86 to 908.13 Oe as a result of the formation of the coating layer.

کلیدواژه‌ها [English]

  • Cobalt ferrite
  • Rietveld refinement analysis
  • Doping
  • Sol-gel
  • Chitosan
  • Polyethylene glycol
  1. Sharifianjazi F, Moradi M, Parvin N, Nemati A, Jafari Rad A, Sheysi N, et al. Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceram Int. 2020;46(11):18391–412.
  2. Datt G, Sen Bishwas M, Manivel Raja M, Abhyankar AC. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale. 2016;8(9):5200–13.
  3. Comanescu C. Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. Chem. 2022;4(3):872–930.
  4. Hassanzadeh-Tabrizi SA, Norbakhsh H, Pournajaf R, Tayebi M. Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceram Int. 2021;47(13):18167–76.
  5. Heydaryan K, Almasi Kashi M, Montazer AH. Tuning specific loss power of CoFe2O4 nanoparticles by changing surfactant concentration in a combined co-precipitation and thermal decomposition method. Ceram Int. 2022;48(12):16967–76.
  6. Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012:13–5.
  7. Nam PH, Lu LT, Linh PH, Manh DH, Thanh Tam LT, Phuc NX, et al. Polymer-coated cobalt ferrite nanoparticles: Synthesis, characterization, and toxicity for hyperthermia applications. New J Chem. 2018;42(17):14530–41.
  8. Ma JZ, Liu YH, Bao Y, Liu JL, Zhang J. Research advances in polymer emulsion based on “core-shell” structure particle design. Adv Colloid Interface Sci. 2013;197–198:118–31.
  9. Suárez J, Daboin V, González G, Briceño S. Chitosan-polyvinylpyrrolidone CoxFe3−xO4 (0.25 ≤ x ≤ 1) nanoparticles for hyperthermia applications. Int J Biol Macromol. 2020;164:3403–10.
  10. Faraji S, Dini G, Zahraei M. Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging. J Magn Magn Mater. 2019;475:137–45.
  11. Mokhosi SR, Mdlalose W, Mngadi S, Singh M, Moyo T. Assessing the structural, morphological and magnetic properties of polymer-coated magnesium-doped cobalt ferrite (CoFe2O4) nanoparticles for biomedical application. J Phys Conf Ser. 2019;1310(1).
  12. Krasitskaya V V., Kudryavtsev AN, Yaroslavtsev RN, Gerasimova Y V., Velikanov DA, Bayukov OA, et al. Starch-Coated Magnetic Iron Oxide Nanoparticles for Affinity Purification of Recombinant Proteins. Int J Mol Sci. 2022;23(10).
  13. Šuljagić M, Vulić P, Jeremić D, Pavlović V, Filipović S, Kilanski L, et al. The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. Mater Res Bull. 2021;134:111117.
  14. Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. 2019;560:282–93.
  15. Asgharnasl S, Eivazzadeh-Keihan R, Radinekiyan F, Maleki A. Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1,8-dioxo-decahydroacridine derivatives. Int J Biol Macromol. 2020;144:29–46.
  16. Park BK, Kim MM. Applications of chitin and its derivatives in biological medicine. Int J Mol Sci. 2010;11(12):5152–64.
  17. Nam PH, Phuc NX, Manh DH, Tung DK, Nguyen VQ, Nam NH, et al. Physical characterization and heating efficacy of chitosan-coated cobalt ferrite nanoparticles for hyperthermia application. Phys E Low-Dimensional Syst Nanostructures. 2021;134:114862.
  18. Mohammadi, J.Safari. Properties, modification methods and applications of chitosan, nano chitosan and their derivatives. J Appl Res Chem. 2022;1:1–20.
  19. Talebniya, Sh, Saeri, M, Sharifi, I, Doostmohammadi A. Synthesis and Characterization of an Environmentally-Friendly Hybrid Nanocomposite Coating. J Adv Mater Eng. 2021;40(1):1–25.
  20. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46.
  21. Liu G, Li K, Luo Q, Wang H, Zhang Z. PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. J Colloid Interface Sci. 2017;490:642–51.
  22. Ghosal K, Chatterjee S, Thomas S, Roy P. A detailed review on synthesis, functionalization, application, challenges, and current status of magnetic nanoparticles in the field of drug delivery and gene delivery system. AAPS PharmSciTech. 2022;24(1):25.
  23. Verma KC, Goyal N, Singh M, Singh M, Kotnala RK. Hematite α-Fe2O3 induced magnetic and electrical behavior of NiFe2O4 and CoFe2O4 ferrite nanoparticles. Results Phys. 2019;13:102212.
  24. Afshari M, Rouhani Isfahani A, Hasani S, Davar F, Jahanbani Ardakani K. Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe 2 O 4 magnetic nanoparticles. Int J Appl Ceram Technol. 2019;16(4):1612–21.
  25. Rouhani AR, Esmaeil-Khanian AH, Davar F, Hasani S. The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int J Appl Ceram Technol. 2018;15(3):758–65.
  26. Fernandes de Medeiros IA, Lopes-Moriyama AL, de Souza CP. Effect of synthesis parameters on the size of cobalt ferrite crystallite. Ceram Int. 2017;43(5):3962–9.
  27. Caldeira LE, Guaglianoni WC, Venturini J, Arcaro S, Bergmann CP, Bragança SR. Sintering-dependent mechanical and magnetic properties of spinel cobalt ferrite (CoFe2O4) ceramics prepared via sol-gel synthesis. Ceram Int. 2020;46(2):2465–72.
  28. Fallah B, Hasani S, Mashreghi A. The Effect of Honey Addition on the Properties of CoFe2O4 Nanoparticles Synthesized by the Sol-Gel Auto-Combustion Method. J Adv Mater Technol. 2023;11(4):1–18.
  29. Erhardt CS, Caldeira LE, Venturini J, Bragança SR, Bergmann CP. Sucrose as a sol-gel synthesis additive for tuning spinel inversion and improving the magnetic properties of CoFe2O4 nanoparticles. Ceram Int. 2020;46(8):12759–66.
  30. Hashemi SM, Hasani S, Jahanbani Ardakani K, Davar F. The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. J Magn Magn Mater. 2019;492:165714.
  31. v.k, Ansari.A AM. synthesis and characterization of nickel cobalt ferrite nanoparticles via heat treatment method. Adv Mater Proc. 2016;1(1):76–80.
  32. Omelyanchik A, Singh G, Volochaev M, Sokolov A, Rodionova V, Peddis D. Tunable magnetic properties of Ni-doped CoFe2O4 nanoparticles prepared by the sol–gel citrate self-combustion method. J Magn Magn Mater. 2019;476:387–91.
  33. Muscas G, Jovanović S, Vukomanović M, Spreitzer M, Peddis D. Zn-doped cobalt ferrite: Tuning the interactions by chemical composition. J Alloys Compd. 2019;796:203–9.
  34. Tahar L Ben, Artus M, Ammar S, Smiri LS, Herbst F, Vaulay MJ, et al. Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE=La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J Magn Magn Mater. 2008;320(23):3242–50.
  35. Peymani-Motlagh SM, Moeinian N, Rostami M, Fasihi-Ramandi M, Sobhani-Nasab A, Rahimi-Nasrabadi M, et al. Effect of Gd3+-, Pr3+- or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests. J Rare Earths. 2019;37(12):1288–95.
  36. Kumar R, Kar M. Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite. Ceram Int. 2016;42(6):6640–7.
  37. Pervaiz E. Influence of Rare Earth ( Gd 3 + ) on Structural , Gigahertz Dielectric and Magnetic Studies of Cobalt ferrite. Phys Conf Ser. 2013;439:12015.
  38. Javed F, Abbas MA, Asad MI, Ahmed N, Naseer N, Saleem H, et al. Gd3+ doped cofe2o4 nanoparticles for targeted drug delivery and magnetic resonance imaging. Magnetochemistry. 2021;7(4):1–16.
  39. Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Kalina L, Urbánek P, et al. Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason Sonochem. 2018;40:773–83.
  40. Mohammadi MA, Asghari S, Aslibeiki B. Surface modified Fe3O4 nanoparticles: A cross-linked polyethylene glycol coating using plasma treatment. Surfaces and Interfaces. 2021;25:101271.
  41. Kim DH, Nikles DE, Johnson DT, Brazel CS. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater. 2008;320(19):2390–6.
  42. Anila I, Mathew MJ. Study on the physico-chemical properties, magnetic phase resolution and cytotoxicity behavior of chitosan-coated cobalt ferrite nanocubes. Appl Surf Sci. 2021;556:149791.
  43. Imanipour P, Hasani S, Afshari M, Sheykh S, Seifoddini A, Jahanbani-Ardakani K. The effect of divalent ions of zinc and strontium substitution on the structural and magnetic properties on the cobalt site in cobalt ferrite. J Magn Magn Mater. 2020;510:166941.
  44. Esmaeili A, Alizadeh Hadad N. Preparation of ZnFe2O4-chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics. Ceram Int. 2015;41(6):7529–35.
  45. Patil RM, Shete PB, Thorat ND, Otari S V., Barick KC, Prasad A, et al. Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and J Magn Magn Mater. 2014;355:22–30.
  46. Lickmichand M, Shaji CS, Valarmathi N, Benjamin AS, Arun Kumar RK, Nayak S, et al. In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications. Mater Today Proc. 2019;15:252–61.
  47. Arévalo-Cid P, Isasi J, Caballero AC, Martín-Hernández F, González-Rubio R. Effects of shell-thickness on the powder morphology, magnetic behavior and stability of the chitosan-coated Fe3O4 nanoparticles. Boletín la Soc Española Cerámica y Vidr. 2022;61(4):300–12.
  48. Nasiri M, Hassanzadeh-Tabrizi SA. Synthesis and Characterization of Folate-decorated Cobalt Ferrite Nanoparticles Coated with Poly(Ethylene Glycol) for Biomedical Applications. J Chinese Chem Soc. 2018;65(2):231–42.
  49. Esmaeili A, Ghobadianpour S. Antibacterial activity of Carum copticum extract loaded MnFe2O4 nanoparticles coated with PEGylated chitosan. Ind Crops Prod. 2016;91:44–8.
  50. Zargar T, Kermanpur A, Labbaf S, Houreh AB, Esfahani MHN. PEG coated Zn0.3Fe2.7O4 nanoparticles in the presence of Fe2O3 phase synthesized by citric acid assisted hydrothermal reduction process for magnetic hyperthermia applications. Mater Chem Phys. 2018;212:432–9.
  51. Morawski F de M, Caon NB, Sousa KAP, Faita FL, Parize AL, Jost CL. Hybrid chitosan-coated manganese ferrite nanoparticles for electrochemical sensing of bifenox herbicide. J Environ Chem Eng. 2021;9(5):106298.
  52. Karaagac O, Köçkar H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles. J Magn Magn Mater. 2022;551:169140.
  53. Saber Braim F, Noor Ashikin Nik Ab Razak N, Abdul Aziz A, Qasim Ismael L, Kayode Sodipo B. Ultrasound assisted chitosan coated iron oxide nanoparticles: Influence of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles. Ultrason Sonochem. 2022;88:106072.
  54. Andrzejewski B, Bednarski W, Kaźmierczak M, Łapiński A, Pogorzelec-Glaser K, Hilczer B, et al. Magnetization enhancement in magnetite nanoparticles capped with alginic acid. Compos Part B Eng. 2014;64:147–54.
  55. Hou YH, Huang YL, Hou SJ, Ma SC, Liu ZW, Ouyang YF. Structural, electronic and magnetic properties of RE3+-doping in CoFe2O4: A first-principles study. J Magn Magn Mater. 2017;421:300–5.

ارتقاء امنیت وب با وف ایرانی