سنتز ریخت- کنترل‌شده نانومیله α-MnO2 در شرایط بی‌نیاز از قالب و بررسی رفتار خازنی الکتروشیمیایی نانوکامپوزیت آن با گرافن اکسید کاهش‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه نانوفناوری، دانشکده فنی، دانشگاه گیلان، رشت، گیلان، ایران

چکیده

در این تحقیق، نانومیله‌های α-MnO2با یک روش جدید آب‌گرمایی ریخت- کنترل‌شده در شرایط بدون نیاز به قالب جهت کاربرد در ذخیره‌سازی الکتروشیمیای انرژی تهیه شد. اکسید گرافن با استفاده از روش هامر اصلاح شده تهیه شد. گروه‌های اکسیژن‌دار با استفاده از هیدرازین جهت تولید اکسید گرافن کاهش‌یافته حذف شدند. نانوکامپوزیت‌های اکسید گرافن کاهش‌یافته و دی‌اکسید منگنز با درصدهای مختلف (G80M20, G40M60, G20M80) ساخته شدند و با روش‌های مناسب با موفقیت مشخصه‌یابی شدند. برای بررسی رفتار خازنی الکتروشیمیایی نمونه‌های مختلف، آزمایش‌های ولتامتری چرخه‌ای ، شارژ/تخلیه گالوانوستاتیک در یک سیستم سه الکترودی با محلول Na2SO4 با غلظت 0/5 مولار به‌عنوان الکترولیت انجام شد. مطالعه طیف‌سنجی امپدانس الکتروشیمیایی و ولتامتری چرخه‌ای در محلول 10 میلی‌مولار K4[Fe(CN)6] حاوی KCl با غلظت 0/1 مولار برای مطالعه خواص سطحی الکترود انجام شد و نشان داد که الکترود G40M60 دارای کمترین مقاومت در برابر انتقال بار و نفوذ یونی می‌باشد. نتایج آزمایش‌های الکتروشیمیایی رفتار ابرخازنی عالی نانوکامپوزیت G40M60 و پایداری بالای 91 درصد پس از 50 چرخه شارژ-تخلیه در چگالی جریان Ag-1 5 را نشان داد. ظرفیت ویژه برای نانوکامپوزیت G40M60 بیشتر از سایر نمونه‌ها و معادل با Fg-1 179 /72 در چگالی جریان Ag-1 0/6 محاسبه شد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of Template Free Morphology Controlled α-MnO2 Nanorod and Electrochemical Capacitive Study of its RGO Nanocomposite

نویسندگان [English]

  • N. Rouhi
  • S. Hassanpoor
Department of Nanotechnology, Faculty of Engineering, University of Guilan, Rasht, Iran
چکیده [English]

In this research, α-MnO2 nanorod was synthesized by a novel morphology controlled hydrothermal method in the absence of mold for electrochemical energy storage. Graphite oxide (GO) was synthesized using the modified Hummers method. The oxygenated groups of GO were eliminated by the use of hydrazine to produce the reduced graphene oxide (RGO). Nanocomposites with different percentages were made with reduced graphene oxide (G) and manganese dioxide (M) (G20M80, G40M60, G80M20) and were characterized successfully with appropriate methods. To investigate the electrochemical capacitor behavior of various samples, cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) experiments were performed in a three-electrode system containing 0.5 M Na2SO4 solution as the electrolyte. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) study in 10 mM K4Fe(CN)6 containing 0.1 M KCl also investigated to evaluate the surface properties of the electrodes. The results of the electrochemical experiments showed that the G40M60 electrode had the lowest resistance to charge transfer and ionic diffiution. The results of electrochemical tests revealed excellent supercapacitor behavior of G40M60 nanocomposite and high stability of 91% after 50 charge-discharge cycles at 5 Ag-1 current density. The specific capacitance for the G40M60 nanocomposite was higher than that of other samples and was calculated as 179.72 F.g-1 in current density of 0.6 A.g-1.

کلیدواژه‌ها [English]

  • Electrochemical supercapacitor
  • Nanocomposite
  • MnO2
  • RGO
  • Hydrothermal
  1. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitor. Chem Soc Rev. 2012; 41: 797-828. https://doi.org/10.1039/ C1CS15060J
  2. Ghouri ZK, Akhtar MS, Zahoor A, Barakat NAM, Han W, Park M, Park B, Saud PS, Lee CH, Kim HY. High-efficiency super capacitors based on hetero-structured α- MnO2 J Alloys Compd. 2015; 642: 210-215. https://doi.org/10.1016/j.jallcom.2015. 04.082
  3. Tamri E, Hassanpoor S. Synthesis and characterization of pyrite nanoparticles and its supercapacitor properties study in different electrolytes on the glass carbon electrode substrate, Nanoscale, 2022;9: 119-127. https://doi.org/1001. 1.24235628.1401.9.1.12.8
  4. Feng X, Yan Z, Chen N, Zhang Y, Ma Y, Liu X, Fan Q, Wang L, Huang W. The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. J Mater Chem A 2013; 1: 12818-12825. https://doi.org/10.1039/C3TA12780J
  5. Hassanpoor S, Baradaran B. Morphology-controlled synthesis of RGO/LiMn2O4 nanocomposite as cathodic Li-ion battery materials and its lithium insertion/extraction study. J Iran Chem Soc 2021;18: 1289-1302. https://doi.org/10.1007/s13738 -020-02110-x
  6. Pourayoob Foumani P, Tajik H, Shirini F, Hassanpoor S. Manganese dioxide (α-MnO2) and graphene oxide (GO) nanocomposites: an efficient promotor for the oxidative deprotection of trimethylsilyl, tetrahydropyranyl and methoxymethyl J Nanosci Nanotechnol 2021; 21 (12): 6016-6023. https://doi.org/10.1166/ jnn.2021.19519
  7. Jiang R, Cui C, Ma H. Using graphene nanosheets as a conductive additive to enhance the capacitive performance of α-MnO2. Electrochim Acta 2013; 104:198-207. https://doi.org/10.1016/j.electacta.2013. 04.125
  8. Cheng Q, Tang J, Ma J, Zhang H, Shinya N. Graphene and nanostructured MnO2 Composite electrodes for supercapacitors. Carbon 2011; 49: 2917-2925. https://doi.org/10.1016/j.carbon.2011.02.068
  9. Mondel Ak, Wang B, Su D, Wang Y, Chen S, Zhang X, Wang G. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for Mater Chem Phys 2014; 143: 740-746. https://doi.org/10.1016/j.matchemphys.2013.10.008
  10. Hassanpoor S, Rajabi M. Application of ecofriendly magnetic nanocomposite synthesized from natural materials for separation and determination of diazinon pesticide in real water samples, Int J Environ Anal Chem 2022;24(11): 1-20. https://doi. org/10.1080/03067319.2022.2087519
  11. Hassanpoor S, Aghely F. Sonochemical synthesis of NiCo2O4/NRGO nanocomposite as a cathodic material for the electrochemical capacitor application, J Iran Chem Soc 2021;18 (4): 993-1003. https://doi.org/10.1007/s13738-020-02084-w
  12. Xiaojun D, Weimei S, Huaqiang C, Rui L, Guangcheng Y. Facile preparation of the novel structured α-MnO2/Graphene nanocomposites and their electrochemical properties. Solid State Sci 2014; 27: 17-23. https://doi.org/10.1016/j.solidstatesciences.11.003
  13. Bello A, Fashedemi O.O, Fabiane M, Lekitima J.N, Ozoemena K.I, Manyala N. Microwave assisted synthesis of MnO 2 on nickel foam-graphen e for el ectrochemical capacitor. Electrochim Acta 2013; 114: 48-53. https://doi.org/10.1016/j.electacta.2013. 134
  14. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 2011;49: 2917-2925. https://doi.org/10.1016/j.carbon.2011.02. 068
  15. Ghasemi S, Hosseinzadeh R, Jafari M. MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor. Int J Hydrogen Energy 2015; 40: 1037-1046. https://doi.org/10.1016/j.ijhydene.2014. 11.072
  16. Khayatian G, Jodan M, Hassanpoor S, Mohebbi S. Determination of trace amounts of cadmium, copper and nickel in environmental water and food samples using GO/MgO nanocomposite as a new sorbent. J Iran Chem Soc 2016; 13: 831–839. https://doi.org/ 10.1007/s13738-015-0798-2
  17. Cao Y, Xiao Y, Gong Y, Wang C, Li F. One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim Acta 2014; 127: 200-207. https://doi.org/10.1016/j.electacta.2014.025
  18. Hassanpoor S, Tamri E. FeS2/SRGO nanocomposite: Synthesis, characterization and comprehensive study of supercapacitor behavior in different electrolytes. J Alloys Compd 2023; 932: 167711. https://doi.org/10. 1016/j.jallcom.2022.167711
  19. Zhang S, Pan N. Supercapacitors Performance Evaluation. Adv Energy Mater 2014; 1401401: 2-19. https://doi.org/10.1002/aenm.201401401
  20. Uddin ME, Layek RK, Kim NH, Hui D, Lee JH. Preparation and properties of reduced graphene oxide/polyacrylonit rile nanocomposites using polyvinyl phenol. Composites Part B 2015; 80: 238-245. https://doi.org/10.1016/j.compositesb.2015.06.009
  21. Wang JG, YangY, Huang ZH, Kang F. Shape-controlled synthesis of hierarchical hollow urchin-shape α-MnO2 nanostructures and their electrochemical properties. Mater Chem Phys 2013; 140: 643-650. https://doi.org/10.1016/j.matchemphys. 2013.04.018
  22. Tian H, He J, Zhang X, Zhou L, Wang D. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation. Microporous Mesoporous Mater 2011; 138: 118-122. https://doi.org/10.1016/j. micromeso.2010.09.022
  23. Li X, Xu X, Xia F, Bu L, Qiu H, Chen M, Zhang L, Gao J. Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 Electrochim Acta 2014; 130: 305-313. https://doi.org/10.1016/ j.electacta.2014.03.040
  24. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green approach for the reduction of graphene oxide by wild carrot root. Carbon 2012; 50: 914-921. https://doi.org/10.1016/j.carbon.2011.09.053
  25. Li Y, Gao W, Ci L, Wang C, Ajayan PM. Catalytic performance of pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010; 392: 1124-1130. https://doi.org/10.1016/j.carbon.2009. 11.034
  26. Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S, Limtrakul J. High-performance supercapacitor of maganese oxide/ reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 2013; 60: 109-116. https://doi.org/10.1016/j.carbon.2013.03.062
  27. Li Z, Wang J, Liu S, Liu X, Yang S. Synthesis of hydrothermally reduced graphene / MnO2 composites and their electrochemical properties as supercapacitors. J Power Sources 2011; 196: 8160-8165. https://doi.org/ 10.1016/j.jpowsour.2011.05.036
  28. Farid MM, Goudini L, Piri F, Zamani A, Saadati F. Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/ CuO loaded on graphene oxide nanoparticles. Food Chem 2016; 194: 61-67. https://doi.org/1016/j.foodchem.2015.07.128
  29. Naderi HR, Ganjali MR, Norouzi P. The Study of Supercapacitive Stability of MnO2/MWCNT Nanocomposite Electrodes by Fast Fourier Transformation Continues Cyclic Voltammetry. Int J Electrochem Sci 2016; 11: 4267-4282. https://doi. org/10.20964/2016.06.60
  30. Li S, Qi L, Lu L, Wang H. Cotton-assisted preparation of mesoporous manganesw oxide for supercapacitors. RSC Advances. 2012; 2: 6741-6743. https://doi.org/10.1039/C2RA20595E
  31. Zheng H, Wang J, Jia Y, Ma C. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J Power Sources 2012; 216: 508-514. https://doi.org/ 10.1016/j.jpowsour.2012.06.047
  32. Deng S, Sun D, Wu C, Wang H, Liu J, Sun Y, Yan H. Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications. Electrochim Acta 2013; 11: 707-712. https://doi.org/10.1016/j.electacta.2013.08.055
  33. Zhao YQ, Zhao DD, Tang PY, Wang YM, Xu CL, Li HL. MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition stratey. Mater Lett 2012; 76: 127-130. https://doi.org/10.1016/j.matlet.2012.02. 097
  34. Yang J, Gunasekaran S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 2013; 51: 36- 44. https://doi. org/10.1016/J.CARBON.2012.08.003
  35. Said MI, Rageh AH, Abdel-aal FAM. Fabrication of novel electrochemical sensors based on modifi cation with diff erent polymorphs of MnO2 nanoparticles, Application to furosemide analysis in pharmaceutical and urine samples. RSC Adv 2018; 8: 18698- 18713. https://doi.org/10.1039/C8RA02978D
  36. Subramanian V, Zhu H, Wei B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J Power Sources 2006; 159: 361-364. https://doi.org /10.1016/j.jpowsour.2006.04.012
  37. Li Y, Xi H, Wang J, Chen L. Preparation and electrochemical performances of α-MnO2 nanorod for supercapacitor. Mater Lett 2011; 65: 403-405. https://doi.org/10.1016/j.matlet.2010.10.048
  38. Sankar SI, Inamdar A, SejoonLee HI, Kim DY. Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode. Ceramics International 2018; 44: 17514-17521. https://doi.org/10.1016/j. ceramint.2018.05.207
  39. Chen C, Fub W, Yu C. A facile one-step hydrothermal method to produce α-MnO2/graphene sheet composites and its electrochemical properties. Mater Lett 2012; 82: 133-136. https://doi.org/10.1016 /j.matlet.2012.04.041

ارتقاء امنیت وب با وف ایرانی