توسعه ورق‌های فوق نازک از آلیاژهای Vicalloy I با افزودن عنصر مولیبدن با تمرکز بر ارتقای خواص مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

در این پژوهش با هدف ارتقای خواص مغناطیسی آلیاژ Vicalloy I، تأثیر افزودن عنصر مولیبدن به‌عنوان یک عنصر پایدار‌کننده فاز فریت مورد بررسی قرار گرفت. به این منظور در ابتدا آلیاژی با ترکیب 45Fe-45Co-9V-1Mo ریخته‌گری شد. در ادامه و به‌منظور بررسی تأثیر زمان عملیات همگن‌سازی، آلیاژ ریختگی در دمای ثابت 1200 درجه سانتی‌گراد و در زمان‌های مختلف تحت عملیات همگن‌سازی قرار گرفت. نتایج بررسی‌های انجام شده نشان داد که پس از انجام همگن‌سازی به مدت 10 ساعت، ساختاری کاملا همگن و یکنواخت با میانگین اندازه دانه‌های 306/48 میکرومتر به‌دست آمد. همچنین در ادامه به‌منظور تولید ورق‌های فوق نازک از این آلیاژ، نمونه‌های همگن شده تحت عملیات نورد گرم و سرد به‌ترتیب با میزان درصد کاهش ضخامت 83 و 81/5 درصد قرار گرفتند و در نهایت ورق‌های فوق نازکی به ضخامت 180 میکرومتر به‌دست آمد. نتایج بررسی‌های فازشناسی نشان داد که انجام فرایندهای نورد گرم و سرد، هر چند تغییرات فازی را به همراه ندارد اما خواص مغناطیسی را تحت تأثیر قرار می‌دهد به‌گونه‌ای که مغناطش اشباع از emu/g 169/94 در نمونه ریختگی به emu/g 190/33 در نمونه نورد سرد شده افزایش می‌‌یابد. همچنین نیروی پسماندزدای مغناطیسی پس از همگن‌سازی به دلیل تشکیل فاز مارتنزیت به میزان 10 اورستد افزایش یافت اما با انجام عملیات نورد سرد به علت تغییر مؤلفه‌‌های بافت، این پارامتر مجدد کاهش یافت. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of Vicalloy I Ultrathin Foils with Mo Addition Focusing on the Improvement of Magnetic Properties

نویسندگان [English]

  • M. Kamali-Ardakani
  • S. Hasani
  • A.R. Mashreghi
Department of Mining and Metallurgical Engineering, Yazd University, 89195-741 Yazd, Iran
چکیده [English]

In this study, the effect of addition of molybdenum as a ferrite phase stabilizer to Vicalloy I was investigated for enhancing its magnetic properties. Initially, an alloy with a composition of 45Fe-45Co-9V-1Mo was cast. The cast alloy was subjected to homogenization at a constant temperature of 1200 ºC for various times to examine the influence of homogenization time. The results indicated that a completely homogeneous structure with an average grain size of 306.48 µm was obtained after homogenization for 10 hours. Furthermore, homogenized samples were subjected to hot and cold rolling processes to produce ultrathin foils of this alloy, resulting in thickness reduction of 83% and 81.5%, respectively, and ultimately yielding foils with a thickness of 180 μm. Phase analysis revealed that while the hot and cold rolling processes did not induce phase changes, the magnetic properties was influenced. Specially, the saturation magnetization increased from 169.94 emu/g in the cast sample to 190.33 emu/g in the cold-rolled sample. Additionally, the coercive force increased by 10 Oe after homogenization due to the formation of a martensitic phase, but decreased again after cold rolling due to the changes in the texture components.

کلیدواژه‌ها [English]

  • Vicalloy
  • Homogenizing
  • Ultrathin foils
  • Magnetic properties
  • Saturation magnetization
  1. Sundar RS, Deevi SC. Soft magnetic FeCo alloys: alloy development, processing, and properties. Int Mater Rev. 2005;50(3):157–92. https://doi.org/10. 1179/174328005X14339
  2. Yousefi M, Sharafi S. Structural and Magnetic Characterization of (Fe65-Co35)100-xSix Alloy Obtained by Mechanical Alloying. J Adv Mater Eng. 2014;33:105–16. URL: http://jame.iut.ac.ir/ article-1-573-en.html
  3. Y TS. Character of transformations in Fe-Co system. Mater Sci Eng A. 1998;248(1–2):238–44. https://doi.org/10.1016/S0921-5093(98)00506-1
  4. Hasani S, Shamanian M, Shafyei A, Behjati P, Mostaan H, Sahu P, et al. Electron microscopy study on grain boundary characterizations of Fe-Co-V alloy during annealing. Vacuum. 2015;114. https://doi. org/10.1016/j.vacuum.2014.12.025
  5. Ashby JA, Flower HM, Rawlings RD. Gamma phase in an Fe-Co-2%V alloy. Met Sci. 1977;11(3):91–6. https://doi.org/10.1179/msc.1977.11.3.91
  6. Sundar R., Deevi S. Influence of alloying elements on the mechanical properties of FeCo–V alloys. Intermetallics. 2004;12(7–9):921–7. https://doi.org/ 10.1179/msc.1977.11.3.91
  7. W, Schmid. H Das Dreistoffsystem Eisen–Kobalt–Vanadin. Teil I: ausbildung des dreistoffsystems bei gehemmter a/c-Umwandlung. Arch Eisenhutten. 1955;26:345–53. https://doi.org/10.1002/srin.195502050
  8. W, Schmid. H. Das Dreistoffsystem Eisen–Kobalt–Vanadin. Teil II: die ausbildung des dreistoffsystems bei gleichgewicht zwischen α/γ Mischkristallen. Arch Eisenhutten. 1955;26:421–5. https://doi.org/10.1002/srin.195502059
  9. Bennett JE, Pinnel MR. Aspects of phase equilibria in Fe/Co/2.5 to 3.0% V alloys. J Mater Sci. 1974; 9(7):1083–90. https://doi.org/10.1007/BF00552822
  10. Major, R V., Orrock CM. High saturation ternary cobalt-iron basalt alloys. IEEE Trans Magn. 1988;24(2):1856–8. https://doi.org/10.1109/20.11625
  11. Sundar RS, Deevi SC, Reddy BV. High Strength FeCo–V Intermetallic Alloy: Electrical and Magnetic Properties. J Mater Res. 2005;20(6):1515–22. https:// doi.org/10.1557/JMR.2005.0206
  12. Sourmail T. Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties. Prog Mater Sci. 2005;50(7):816–80. https://doi.org/ 10.1016/j.pmatsci.2005.04.001
  13. Kamali MR, Karjalainen LP, Mashregi AR, Hasani S, Javaheri V, Kömi J. Reobservations of ferrite recrystallization in a cold-rolled ordered Fe–50Co–10V alloy using the EBSD method. Mater Charact. 2019;158:109962. https://doi.org/10.1016/j.matchar. 2019.109962
  14. Hasani S, Shamanian M, Shafyei A, Behjati P, Szpunar JA, Fathi-Moghaddam M. Nano/sub-micron crystallization of Fe–Co–7.15V alloy by thermo-mechanical process to improve magnetic properties. Mater Sci Eng B. 2014;190:96–103. https://doi.org/ 10.1016/j.mseb.2014.09.013
  15. Zakharov VM, Libman MA, Estrin EI. On the role of atomic ordering in the formation of a high-coercivity state in iron-cobalt-vanadium alloys. Phys Met 2012;113(1):43–7. https://doi.org/10.1134/ S0031918X12010152
  16. K. Effect of additive elements on cold workability in FeCo alloys. J Mater Sci. 1983; 18(6):1709–18. https://doi.org/10.1007/BF00542066
  17. Hasani S, Shamanian M, Shafyei A, Nezakat M, Mostaan H, Szpunar JA. Effect of Recrystallization and Phase Transitions on the Mechanical Properties of Semihard Magnetic FeCo-7.15V Alloy During the Thermomechanical Process. Metall Mater Trans A. 2017;48(4):1903–9. https://doi.org/10.1007/s11661-017- 3954-8
  18. Azad B, Eivani AR, Salehi MT. An investigation of microstructure and mechanical properties of as-cast Zn–22Al alloy during homogenizing and equal channel angular pressing. J Mater Res Technol. 2023; 22:3255–69. https://doi.org/10.1016/j.jmrt.2022.12.062
  19. Foroozmehr, A. Kermanpur, F. Ashrafizadeh YKD. Investigating microstructural evolution during homogenization of the equiatomic NiTi shape memory alloy produced by vacuum arc remelting. Mater Sci Eng A. 2011;528:7952–5. https://doi.org/ 10.1016/j.msea.2011.07.024
  20. Xiang XD, Wang G, Zhang X, Xiang Y, Wang H. Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips. Engineering. 2015;1(2):225–33. https://doi.org/10.15302/J-ENG-2015041
  21. Joffe I. Magnetic hardening and anomalous behaviour of Vicalloy. J Mater Sci. 1974;9(2):315–22. https://doi. org/ 10.1007/BF00550957
  22. Mahajan S, Pinnel MR, Bennet JE. Influence of heat treatments on microstructures in an Fe-Co-V alloy. Met Trans. 1974;5(6):1263–72. https://doi.org/10.1007/ BF02646609
  23. Yu RH, Basu S, Zhang Y, Parvizi-Majidi A, Xiao JQ. Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys. J Appl Phys. 1999;85(9):6655. https://doi.org/ 10.1063/1.370175
  24. Hasani S, Shafyei A, Shamanian M, Behjati P, Mostaan H, Juuti T, et al. Correlation between magnetic properties and allotropic phase transition of Fe-Co-V alloy. Acta Metall Sin (English Lett.) 2015; 28(8). https://doi.org/10.1007/s40195-015-0294-9
  25. Kamali MR, Mashreghi AR, Karjalainen LP, Hasani S, Javaheri V, Kömi J. Influence of microstructure and texture evolution on magnetic properties attained by annealing of a cold-rolled Fe-Co-10V semi-hard magnetic alloy. Mater Charact. 2020;169:110591. https://doi.org/10.1016/j.matchar.2020.110591

 

 

 

تحت نظارت وف ایرانی