بررسی اثر طول موج لیزر و محیط بر سنتز نانوذرات مس و اکسید مس با لیزر YAG:Nd نانوثانیه در مایع

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوری‌های ساخت

چکیده

در این تحقیق نانوذرات مس با استفاده از روش فرسایش لیزری در مایع با استفاده از لیزر Nd:YAG نانوثانیه سنتز شدند. ابتدا اثر طول‌موج‌های 532 نانومتر و 1064 نانومتر بر سنتز نانوذرات مس در محیط‌های آب مقطر و استون مورد بررسی قرار گرفت. پس از یافتن طول‌موج مناسب، اثر محیط‌های سنتز در حضور سورفکتانت‌های ستیل تری‌متیل آمونیوم کلرید، سدیم دودسیل سولفات و پلی‌وینیل پیرولیدون روی نانوذرات مس مورد بررسی قرار گرفت. برای بررسی خواص نوری، بازده سنتز، اندازه و مورفولوژی نانوذرات مس تهیه شده به روش فرسایش لیزری در مایع به‌ترتیب از آنالیزهای طیف‌سنجی نوری مرئی– فرابنفش، طیف‌سنجی جذب اتمی، پراش نور دینامیکی و میکروسکوپ الکترونی روبشی گسیل میدانی استفاده شد. نتایج نشان داد که نانوذرات مس را می‌توان با موفقیت در محیط استون در طول‌موج 1064 نانومتر سنتز کرد. همچنین، به دلیل تشکیل اکسیدهای مس به‌جای نانوذرات مس، احتمال کمی برای تهیه نانوذرات مس در محیط‌های آبی وجود دارد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Laser Wavelength and Environment on the Synthesis of Copper and Copper Oxide Nanoparticles by Nanosecond Nd:YAG Laser in Liquid

نویسندگان [English]

  • H. Naderi-Samani
  • R. Shoja Razavi
  • R. Mozaffarinia
Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Iran
چکیده [English]

In this research, copper nanoparticles were synthesized via laser ablation in liquid using a nanosecond Nd:YAG laser. First, the effect of wavelengths of 532 nm and 1064 nm on the synthesis of copper nanoparticles in acetone and distilled water was investigated. After finding the appropriate wavelength, the effect of synthesis media in the presence of surfactants containing cetyltrimethylammonium chloride, sodium dodecyl sulfate, and polyvinyl pyrrolidone on copper nanoparticles was studied. Visible-ultraviolet optical spectroscopy, atomic absorption spectroscopy, dynamic light diffraction, and field emission scanning electron microscopy were employed to investigate the optical properties, synthesis efficiency, size, and morphology of copper nanoparticles prepared by the laser ablation in liquid method, respectively. The results showed that copper nanoparticles could be successfully synthesized in an acetone medium at 1064 nm wavelength. Also, due to the formation of copper oxides instead of copper nanoparticles, there is a slight possibility of preparing copper nanoparticles in aqueous environments.

کلیدواژه‌ها [English]

  • Copper nanoparticles
  • Copper oxide
  • Laser ablation
  • Colloid containing nanoparticles
  1. Khodashenas B, Ghorbani HR. Synthesis of copper nanoparticles: An overview of the various methods. Korean J Chem Eng. 2014;31:1105-9. https://doi.org/ 10.1007/s11814-014-0127-y
  2. Naderi-Samani H, Razavi RS. Synthesis of Nanoparticles Using Pulsed Laser. 2024. https://doi.org/10.5772/ intechopen.1004415
  3. Ganjali M, Ganjali M, Khoby S, Meshkot MA. Synthesis of Au-Cu nano-alloy from monometallic colloids by simultaneous pulsed laser targeting and stirring. Nanomicro Lett. 2011;3:256-63. http://dx. doi.org/10.3786/nml.v3i4.p256-263
  4. Sadrolhosseini AR, Mahdi MA, Alizadeh F, Rashid SA. Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technology and its Applications. 2019:63-83. http://dx.doi.org/10.5772/ intechopen.80374
  5. Fernández-Arias M, Boutinguiza M, Del Val J, Covarrubias C, Bastias F, Gómez L, et al. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl Surf Sci. 2020; 507: 145032. https://doi.org/10.1016/j.apsusc. 2019.145032
  6. Budiati IM, Sa’adah F, Rifani ND, Khumaeni A, editors. Effect of solvent in the synthesis of colloidal copper nanoparticles by pulse laser ablation method. AIP Conference Proceedings; 2019: AIP Publishing. https://doi.org/10.3390/nano12132144.
  7. Liu P, Li Z, Cai W, Fang M, Luo X. Fabrication of cuprous oxide nanoparticles by laser ablation in PVP aqueous solution. RSC adv. 2011;1(5):847-51. https: //doi.org/ 10.1039/c1ra00261a
  8. Zavala-Arredondo M, Boone N, Willmott J, Childs DT, Ivanov P, Groom KM, et al. Laser diode area melting for high speed additive manufacturing of metallic components. Materials & Design. 2017;117: 305-15. https://doi.org/10.1016/j.matdes.2016.12.095
  9. Herbani Y, Nasution R, Mujtahid F, Masse S, editors. Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production. J Phys Conf Ser. 2018. https://doi.org/10.1088/1742-6596/985/1/ 012005
  10. Begildayeva T, Lee SJ, Yu Y, Park J, Kim TH, Theerthagiri J, et al. Production of copper nanoparticles exhibiting various morphologies via pulsed laser ablation in different solvents and their catalytic activity for reduction of toxic nitroaromatic compounds. J Hazard Mater. 2021; 409:124412. https://doi.org/10.1016/j.jhazmat.2020.124412
  11. Muniz-Miranda M, Gellini C, Giorgetti E. Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J Phys Chem C. 2011; 115(12): 5021-7. https://doi.org/10. 1021/jp1086027
  12. Nath A, Khare A. Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids. J Appl Phys. 2011;110, 043111. http://dx.doi.org/ 10.1063/1. 3626463
  13. Goncharova DA, Kharlamova TS, Lapin IN, Svetlichnyi VA. Chemical and morphological evolution of copper nanoparticles obtained by pulsed laser ablation in liquid. J Phys Chem C. 2019;123(35): 21731-42. https://doi. org/10.1021/acs.jpcc.9b03958
  14. Mansoureh G, Parisa V. Synthesis of metal nanoparticles using laser ablation technique. Emerging applications of nanoparticles and architecture nanostructures: Elsevier; 2018. p. 575-96. https://doi. org/10.1016/B978-0-323-51254-1.00019-1
  15. Cuenca JP, López JD, Werneck MM, Camargo Jr SS, Duque JS, Riascos H. Optical Properties of Cu, Ni, and Co Nanoparticles Synthesized by Pulsed Laser in Liquid Ambient. Braz J Phys. 2022;52(3):96.
  16. Zhang D, Li Z, Sugioka K. Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. J Phys Photonics. 2021;3(4):042002. https://doi.org/1088/2515-7647/ac0bfd
  17. Baruah PK, Sharma AK, Khare A. Effective control of particle size, surface plasmon resonance and stoichiometry of Cu@ CuxO nanoparticles synthesized by laser ablation of Cu in distilled water. Opt Laser Technol. 2018;108:574-82. https://doi. org/10.1016/j.optlastec.2018.07.044
  18. Jianfeng Y, Guisheng Z, Anming H, Zhou YN. Preparation of PVP coated Cu NPs and the application for low-temperature bonding. J Mater Chem. 2011; 21(40):15981-6. https://doi.org/ 10.1039/c1jm12108a
  19. Tsuji T, Iryo K, Nishimura Y, Tsuji M. Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II). J Photochem Photobiol A: Chem. 2001; 145(3): 201-7. https://doi.org/10.1016/S1010-6030(01)00583-4
  20. Pavithran SS, McCann R, McCarthy É, Freeland B, Fleischer K, Goodnick S, et al. Silver and Copper nano-colloid generation via Pulsed Laser Ablation in Liquid: Recirculation nanoparticle production mode. 2021.
  21. Im H-J, Jung EC. Colloidal nanoparticles produced from Cu metal in water by laser ablation and their Radiat Phys Chem Oxf Engl. 2016;118: 6-10. https://doi.org/10.1016/j.radphyschem.2015.06. 005
  22. Naderi-Samani H, Razavi RS, Mozaffarinia R. Investigating the effect of 532 nm and 1064 nm wavelengths and different liquid media on the qualities of silver nanoparticles yielded through laser ablation. Mater Chem Phys. 2023;305:128001. https://doi.org/10.1016/j.matchemphys.2023.128001

تحت نظارت وف ایرانی