تهیه و ارزیابی ریزساختار، استحکام فشاری و کششی فوم‌های ترکیبی از جنس وینیل استر/میکروبالن شیشه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، اصفهان، ایران

چکیده

فوم‌های ترکیبی (سینتاکتیک) متشکل از رزین وینیل استر میکروکره توخالی (میکروبالن) شیشه‌ای به‌دلیل داشتن چگالی کم، نسبت استحکام/ چگالی بالا و قابلیت جذب انرژی در بسیاری از سازه‌های دریایی یا هوایی استفاده می‌شوند. در این تحقیق رزین وینیل استر خالص به همراه سه درصد حجمی گوناگون 20، 40 و 60 درصد از میکروبالن شیشه‌ای به روش قالب‌گیری ریخته‌گری تولید شد. تأثیر درصد میکروبالن‌ها بر چگالی، ویژگی‌های فشاری و کششی فوم‌ها ارزیابی شد. اندازه‌گیری چگالی فوم‌ها نشان داد که با افزایش درصد میکروبالن شیشه‌ای، از صفر درصد به 60 درصد حجمی، چگالی از 1/04 به 0/563 گرم بر سانتی‌متر مکعب کاهش پیدا کرد. نتایج نشان داد با افزایش درصد میکروبالن استحکام فشاری و کششی فوم‌ها کاهش ولی استحکام فشاری ویژه (نسبت استحکام فشاری/چگالی) فوم‌ها افزایش می‌یابند. بیش‌ترین استحکام کششی مربوط به رزین وینیل استر بدون میکروبالن با استحکام کششی MPa 40 است. ویژگی استحکام فشاری ویژه فوم‌ها از MPa.cm3/g 76 به MPa.cm3/g 98 با افزایش درصد میکروبالن شیشه‌ای از صفر درصد به 60 درصد افزایش پیدا کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation and Evaluation of Microstructure, Compressive and Tensile Strength of Vinyl Ester/Glass Micro Balloon Foams

نویسندگان [English]

  • M.R. Loghman
  • M. Najafpour
  • A.R. Nasr Esfahani
  • H. Sheikh
  • M. Sadeghi
  • E. Mohammad Sharifi
Department of Materials Engineering, Malek AShtar University of Technology, Iran
چکیده [English]

Syntactic foams consisting of vinyl ester resin hollow glass microspheres (microballoons) are used in many marine or air structures due to their low density, high stiffness/density ratio, and ability to absorb energy. In this research, pure vinyl ester resin with three different volume percentages of 20%, 40%, and 60% of glass microballoons was produced by molding and casting method. The effect of the percentage of microballoons on the density, compressive, and tensile properties of foams was evaluated. The density measurement of the foams showed that with the increase in the percentage of glass microballoons, from 0% to 60% by volume, the density decreased from 1.04 g/cm3 to 0.563 g/cm3. The results showed that with the increase in the percentage of microballoons, the compressive and tensile strength of the foams decrease, but the specific compressive strength (compressive strength to density ratio) of foams increases. The highest tensile strength is related to the vinyl ester resin without microballoons with a tensile strength of 40 MPa. The specific compressive strength of foams increased from 76 MPa.cm3/g to 98 MPa.cm3/g by increasing the percentage of glass microballoon from 0% to 60%.

کلیدواژه‌ها [English]

  • Syntactic foam
  • Vinyl ester resin
  • Glass microballoons
  • Compressive properties
  • Tensile properties
  1. Gupta N, Ye R, Porfiri M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos. B Eng. 2010; 41(3): 236-45. https://doi.org/10.1016/j.compositesb. 2009.07.004
  2. Salleh Z, Islam MM, Epaarachchi JA, Su H. Vinyl ester/glass microballoon syntactic foams with low density. Int. Res. J. Mater. Sci. 2017; 2017(1): 1-25. http://escipub.com/Articles/IRJMSA/IJMSA-2017-04-1001
  3. Afolabi OA. Hybrid syntactic foam core cased natural-glass fibre sandwich composite (Doctoral dissertation), 2023.
  4. Shunmugasamy VC, Pinisetty D, Gupta N. Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency. J. Mater. 2013; 48:1685-701. https://doi.org/10.1007/s10853-012-6927-8
  5. Dando KR, Cross WM, Robinson MJ, Salem DR. Characterization of mixture epoxy syntactic foams highly loaded with thermoplastic and glass J. Compos. Mater. 2019;53(13):1737-49. https://doi.org/10.1177/00219983188107
  6. John B, Nair CR, Syntactic foams. In Handbook of thermoset plastics. William Andrew Publishing; 2014. p.‏ 511-554.
  7. Mae H, Omiya M, Kishimoto K. Effects of strain rate and density on tensile behavior of polypropylene syntactic foam with polymer microballoons. Mater. Sci. Engin.: A. 2008;477(1-2):168-78. https://doi.org/ 10.1016/j.msea.2007.05.028
  8. Papakonstantinou CG, Giancaspro JW, Balaguru PN. Fire response and mechanical behavior of polysialate syntactic foams. Compos. Part A: Appl. Sci. 2008;39(1):75-84. https://doi.org/10.1016/ j.compositesa.2007.08.029
  9. Ray D, Gnanamoorthy R. Friction and wear behavior of vinylester resin matrix composites filled with fly ash particles. J. Reinforc. Plastics Compos. 2007;26 (1):5-13. https://doi.org/10.1177/0731684407 069945
  10. Mohammadian Z, Azdast T. A novel method to develop nanocomposite bimodal foams containing expandable polymeric microballoons: microstructural characteristics. J. Porous Mater. 2023;30(2):433-47. https://doi.org/10.1007/s10934-022-01355-6
  11. Chen Y, Quino G, Pellegrino A. A comprehensive investigation on the temperature and strain rate dependent mechanical response of three polymeric syntactic foams for thermoforming and energy absorption applications. Polymer Testing. 2024;130: https://doi.org/10.1016/j.polymertesting.2023. 108287
  12. Gupta N, Woldesenbet E, Mensah, P. Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Compos. Part A: Appl. Sci. Manufact. 2004; 35(1), pp.103-111. https://doi.org/10.1016/j.compositesa.2003.08.001
  13. Woldesenbet E, Peter S. Radius ratio effect on high-strain rate properties of syntactic foam composites. J. Mat. Sci. 2009;44:1551-9. https://doi.org/10.1007/ s10853-008-3026-y
  14. Gupta N, Kishore, Woldesenbet E, Sankaran S. Studies on compressive failure features in syntactic foam material. J. Mat. Sci. 2001; 36: 4485-91. https:// doi.org/10.1023/A:1017986820603
  15. Tagliavia G, Porfiri M, Gupta N. Vinyl ester—glass hollow particle composites: dynamic mechanical properties at high inclusion volume fraction. J. Compos. Mater. 2009;43(5):561-82. https://doi.org/ 10.1177/0021998308097683
  16. Sankaran S, Ravishankar BN, Ravi Sekhar K, Dasgupta S, Jagdish Kumar MN. Syntactic foams for multifunctional applications. Compos. Mater.: Proces., Appl., Charact. 2017:281-314. https://doi. org/10.1007/978-3-662-49514-8_9
  17. Anirudh S, Jayalakshmi CG, Anand A, Kandasubramanian B, Ismail SO. Epoxy/hollow glass microsphere syntactic foams for structural and functional application-A review. Europ. Polymer J. 2022; 171:111163. https://doi.org/10.1016/j.eurpolymj. 2022.111163
  18. Yadav SK, Schmalbach KM, Kinaci E, Stanzione III JF, Palmese GR. Recent advances in plant-based vinyl ester resins and reactive diluents. Europ. Polymer J. 2018;98:199-215. https://doi.org/10.1016/ j.eurpolymj.2017.11.002
  19. Wang P, Zhong S, Yan K, Liao B, Guo Y, Zhang J. Effect of hollow glass microspheres surface modification on the compressive strength of syntactic foams. J. Mater. Res. Technol. 2024;30:2264-71. https://doi.org/10.1016/j.jmrt.2024.04.007
  20. Singh AK, Behera R, Shishkin A, Gupta N. Effect of expanded glass particle size on compressive properties of vinyl ester syntactic foams. SPE Polymers. 2022; 3(2): 91-8. https://doi.org/10.1002/ pls2.10066
  21. Ahmadi H, Shokrieh MM. Volume fraction and microballoon size effects on the compressive properties of epoxy/ceramic microballoon syntactic foam. Modares Mechanic. Engin. 2014;14(4):37-44. http://mme.modares.ac.ir/article-15-6079-en.html

تحت نظارت وف ایرانی