بررسی اثر دما بر ریزساختار و خواص مکانیکی کامپوزیت سرامیکی فوق دما بالا ZrB2-SiC-TiC به روش تف‌جوشی پلاسمای جرقه‌ای چندمرحله‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان 84156-83111، ایران

چکیده

تف‌جوشی  ZrB2 به دلیل ماهیت کووالانسی و دمای تف‌جوشی بالا با چالش مواجه است. بررسی تحقیقات قبلی نشان داد، حضور حداکثر 20 درصد حجمی SiC در میان افزودنی‌های پیشنهادشده، موجب بهبود فرایند تف‌جوشی و خواص مکانیکی کامپوزیت پایه ZrB2 شده است. هدف پژوهش، ساخت و مشخصه‌یابی کامپوزیت سرامیکی فوق دما بالا پایه ZrB2-20 vol% SiC به روش تف‌جوشی پلاسمای جرقه‌ای با روش چندمرحله‌ای در دماهای مختلف و بررسی اثر آن بر رفتار افزودنی‌ TiC و خواص مکانیکی کامپوزیت است. لذا اثر دما بر روی ریزساختار و خواص مکانیکی از دمای 1600 تا 1900 درجه سانتی‌گراد و فشار 30 مگاپاسکال و افزودنی 10 درصد حجمی TiC بررسی شد. افزودن TiC تا 10 درصد حجمی به کامپوزیتZrB2-20 vol% SiC  و تف‌جوشی آن تحت دمای 1800 درجه سانتی‌گراد و زمان ماند پنج دقیقه، به دلیل تشکیل محلول جامد (Zr,Ti)B2 و (Ti,Zr)C در زمینه و واکنش با اکسیدهای سطحی پودر ZrB2 نظیر ZrO2 و B2O3 منجر به افزایش 15 درصدی چگالی نسبی و بهبود خواص مکانیکی شامل سختی (14 درصد)، مدول الاستیک (12 درصد)، استحکام شکست (20 درصد) و چقرمگی شکست (8 درصد) شد؛ مقایسه نتایج این پژوهش نسبت به تحقیقات قبل نشان داد استفاده از تف‌جوشی پلاسمای جرقه‌ای با روش چندمرحله‌ای به جای تف‌جوشی پلاسمای جرقه‌ای تک‌‌مرحله‌ای موجب کاهش دما و زمان ماند جهت رسیدن به تراکم بالای 99 درصد شد. همچنین نتایج نشان داد افزایش بیشینه دمای تف‌جوشی به 1900 درجه سانتی‌گراد در کامپوزیت ZrB2- 20 vol% SiC – 10 vol% TiC موجب رشد افراطی دانه و کاهش جزئی چگالی نسبی به مقدار یک درصد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effect of Temperature on the Microstructural and Mechanical Properties of the Ultra-High Temperature Ceramic Composite ZrB2-SiC-TiC Using the Multi-Step Spark Plasma Sintering Method

نویسندگان [English]

  • S. Pourbahraini
  • M. Ahmadian
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

The sintering of ZrB2 presents significant challenges due to its covalent bonding and the high temperatures required for the process. Prior research has demonstrated that incorporating up to 20% by volume of SiC as an additive can enhance both the sintering process and the mechanical properties of ZrB2-based composites. The objective of this study was to fabricate and characterize an ultra-high temperature ceramic composite composed of ZrB2 containing 20 vol. % SiC, utilizing the Spark Plasma Sintering (SPS) method with a multi-step approach at various temperatures. Additionally, the study sought to investigate the influence of a TiC additive on the microstructural evolution and mechanical properties of the composite. The research focused on assessing the impact of sintering temperature, ranging from 1600°C to 1900°C under a pressure of 30 MPa, in the presence of a 10 vol. % TiC additive. The introduction of up to 10% by volume of TiC into the ZrB2-20 vol. % SiC composite, followed by sintering at 1800°C for 5 minutes, resulted in the formation of (Zr,Ti)B2 and (Ti,Zr)C solid solutions within the matrix. These solid solutions, along with reactions involving surface oxides such as ZrO2 and B2O3, contributed to a 15% increase in relative density. Furthermore, notable enhancement was observed in the mechanical properties, including a 14% increase in hardness, a 12% increase in elastic modulus, a 20% increase in fracture strength, and an 8% increase in fracture toughness. A comparative analysis with previous studies revealed that employing a multi-step SPS technique, as opposed to a single-step process, significantly reduced the temperature and time of the process to achieve a relative density exceeding 99%. However, it was also observed that increasing the maximum sintering temperature to 1900°C in the ZrB2-20 vol. % SiC-10 vol. % TiC composite resulted in excessive grain growth and a slight decrease in relative density by approximately 1%.

کلیدواژه‌ها [English]

  • Ultra-high temperature ceramics
  • Ceramic matrix composite
  • Zirconium diboride
  • Silicon carbide
  • Titanium carbide
  • Multi-step spark plasma sintering
  • Solid solution
  1. Asl MS, Nayebi B, Ahmadi Z, Zamharir MJ, Shokouhimehr M. Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceram Int. 2018; 44(7): 7334–48. https://doi.org/10. 1016/j.ceramint.2018.01.214
  2. Rueschhoff LM, Carney CM, Apostolov ZD, Cinibulk MK. Processing of fiber-reinforced ultra-high temperature ceramic composites: A review. Int J Ceram Eng Sci. 2020; 2(1):22–37. https://doi.org/ 10.1002/ces2.10033
  3. Asl MS, Kakroudi MG, Noori S. Hardness and toughness of hot pressed ZrB2-SiC composites consolidated under relatively low pressure. J Alloys Compd. 2015; 619:481–7. http://dx.doi.org/10.1016/ j.jallcom.2014.09.006
  4. Guo SQ, Kagawa Y, Nishimura T. Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. J Eur Ceram Soc. 2009; 29 (4): 787–94. https://doi.org/10.1016/j.jeurceramsoc. 2008.06.037
  5. Guo SQ. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc. 2009; 29(6): 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  6. Farahbakhsh I, Ahmadi Z, Shahedi Asl M. Densification, microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black. Ceram Int. 2017; 43(11):8411–7. http://dx.doi.org/10.1016/j.ceramint.2017.03.188
  7. Yadhukulakrishnan GB, Rahman A, Karumuri S, Stackpoole MM, Kalkan AK, Singh RP, et al. Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater Sci Eng A. 2012; 552: 125–33. http://dx.doi.org/10.1016/j.msea.2012.05.020
  8. Chakraborty S, Das PK, Ghosh D. Spark plasma sintering and structural properties of ZrB2 based ceramics: A review. Rev Adv Mater Sci. 2016; 44(2):182–93. https://doi.org/10.1002/ces2.10033
  9. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007; 90(5):1347–64. https://doi. org/10.1111/j.1551-2916.2007.01583.x
  10. Purwar A, Mukherjee R, Ravikumar K, Ariharan S, Gopinath NK, Basu B. Development of ZrB2-SiC-Ti by multi stage spark plasma sintering at 1600°C. J Ceram Soc Japan. 2016; 124(4):393–402. https://doi. org/10.2109/jcersj2.15260
  11. Rezaie A, Fahrenholtz WG, Hilmas GE. Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2-SiC. J Mater Sci. 2007; 42(8):2735–44.
  12. Zhang L, Padture NP. Inhomogeneous oxidation of ZrB2-SiC ultra-high-temperature ceramic particulate composites and its mitigation. Acta Mater. 2017; 129: 138–48. http://dx.doi.org/10.1016/j.actamat.2017.02. 076
  13. Fahrenholtz WG. Thermodynamic analysis of ZrB2-SiC oxidation: Formation of a SiC-depleted region. J Am Ceram Soc. 2007; 90(1):143–8. https://doi.org/ 10.1111/j.1551-2916.2006.01329.x
  14. Yan X, Jin X, Li P, Hou C, Hao X, Li Z, et al. Microstructures and mechanical properties of ZrB2–SiC–Ni ceramic composites prepared by spark plasma sintering. Ceram Int. 2019; 45(13):16707–12. https://doi.org/10.1016/j.ceramint.2019.05.151
  15. Nayebi B, Ahmadi Z, Shahedi Asl M, Parvizi S, Shokouhimehr M. Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites. J Alloys Compd. 2019; 805:725–32. https://doi.org/10.1016/j.jallcom.2019.07.117
  16. Golla BR, Thimmappa SK. Comparative study on microstructure and oxidation behaviour of ZrB2-20 vol% SiC ceramics reinforced with Si3N4/Ta additives. J Alloys Compd. 2019; 797:92–100. https://doi.org/10.1016/j.jallcom.2019.05.097
  17. Hu C, Sakka Y, Jang B, Tanaka H, Nishimura T, Guo S, et al. Microstructure and properties of ZrB2-SiC and HfB2-SiC composites fabricated by spark plasma sintering (SPS) using TaSi2 as sintering aid. J Ceram Soc Japan. 2010; 118(1383): 997–1001. https://doi. org/10.2109/jcersj2.118.997
  18. Neuman EW, Thompson M, Fahrenholtz WG, Hilmas GE. Thermal properties of ZrB2-TiB2 solid solutions. J Eur Ceram Soc. 2021; 41(15):7434–41. https://doi.org/10.1016/j.jeurceramsoc.2021.08.004
  19. Wu WW, Zhang GJ, Kan YM, Wang PL. Reactive hot pressing of ZrB 2-SiC-ZrC ultra high-temperature ceramics at 1800°C. J Am Ceram Soc. 2006; 89(9):2967–9. https://doi.org/10.1111/j.1551-2916.2006.01145.x
  20. Ma H Bin, Zou J, Zhu JT, Lu P, Xu FF, Zhang GJ. Thermal and electrical transport in ZrB2-SiC-WC ceramics up to 1800 °C. Acta Mater. 2017; 129:159–69. http://dx.doi.org/10.1016/j.actamat.2017.02.052
  21. Monteverde F, Bellosi A. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride. Scr Mater. 2002; 46(3):223–8.
  22. Guo SQ, Nishimura T, Mizuguchi T, Kagawa Y. Mechanical properties of hot-pressed ZrB2-MoSi2-SiC composites. J Eur Ceram Soc. 2008; 28(9):1891– https://doi.org/10.1016/j.jeurceramsoc.2008.01.003
  23. Han W, Li G, Zhang X, Han J. Effect of AlN as sintering aid on hot-pressed ZrB2-SiC ceramic composite. J Alloys Compd. 2009; 471(1–2):488–91. https://doi.org/ 1016/j.jallcom.2008.03.135Wei
  24. C, Liu X, Niu J, Feng L, Yue H. High temperature mechanical properties of laminated ZrB2–SiC based ceramics. Ceram Int. 2016; 42(16):18148–53. http:// dx.doi.org/10.1016/j.ceramint.2016.08.129
  25. Xiang L, Cheng L, Shi L, Yin X, Zhang L. Mechanical and ablation properties of laminated ZrB2-SiC/BN ceramics. J Alloys Compd. 2015; 638: 261–6. http://dx.doi.org/10.1016/j.jallcom.2015.03.097
  26. Nisar A, Ariharan S, Venkateswaran T, Sreenivas N, Balani K. Effect of carbon nanotube on processing, microstructural, mechanical and ablation behavior of ZrB2-20SiC based ultra-high temperature ceramic composites. Carbon N Y. 2017; 111:269–82. http:// dx.doi.org/10.1016/j.carbon.2016.10.002
  27. Yang F, Zhang X, Han J, Du S. Characterization of hot-pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites. J Alloys Compd. 2009; 472(1–2):395–9. https://doi.org/10. 1016/j. jallcom.2008.04.092
  28. Shahedi Asl M, Ghassemi Kakroudi M. Characterization of hot-pressed graphene reinforced ZrB2-SiC composite. Mater Sci Eng A. 2015; 625: 385–92. http://dx.doi.org/10.1016/j.msea.2014.12.028
  29. Pierson HO. Carbides of Group VI. Handb Refract Carbides Nitrides. 1996; 100–17.
  30. Ghafuri F, Ahmadian M, Emadi R, Zakeri M. Effects of SPS parameters on the densification and mechanical properties of TiB 2 -SiC composite. Ceram Int. 2019; 45(8):10550–7. https://doi.org/10. 1016/j.ceramint.2019.02.119
  31. Mohamed JJ, Salim SAS, Ahmad ZA. Comparative Study on the Effect of Zr4+ and Ca2+ Doping on the Properties of NiO. Procedia Chem. 2016; 19:949–54. https://linkinghub.elsevier.com/retrieve/pii/S1876619616001868
  32. Sengupta P, Sahoo SS, Bhattacharjee A, Basu S, Manna I. Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite. J Alloys Compd. 2021; 850:156668. https://doi.org/10.1016/ j.jallcom.2020.156668
  33. Istgaldi H, Nayebi B, Ahmadi Z, Shahi P, Asl MS. Characterization of ZrB2–TiC composites reinforced with short carbon fibers. Ceram Int. 2020; 46(14): 23155–64. https://doi.org/10.1016/j.ceramint.2020.06. 095
  34. Sharma A, Karunakar DB. Effect of SiC and TiC addition on microstructural and mechanical characteristics of microwave sintered ZrB2 based hybrid composites. Ceram Int. 2021; 47(18):26455–64. https://doi.org/10.1016/j.ceramint.2021.06.058
  35. Istgaldi H, Shahedi Asl M, Shahi P, Nayebi B, Ahmadi Z. Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites. Ceram Int. 2020; 46(3):2923–30 https://doi.org/10. 1016/j.ceramint.2019.09.287
  36. Galizia P, Zoli L, Sciti D. Impact of residual stress on thermal damage accumulation, and Young’s modulus of fiber-reinforced ultra-high temperature ceramics. Mater Des. 2018; 160:803–9. https://doi.org/10.1016/ matdes.2018.10.019
  37. Balak Z, Shahedi Asl M, Azizieh M, Kafashan H, Hayati R. Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPS. Ceram Int. 2017; 43(2): 2209–20. http://dx.doi.org/10.1016/j.ceramint.2016. 11.005
  38. Perez N. Fracture Mechanics [Internet]. Cham: Springer International Publishing; 2017. https://link. springer.com/10.1007/978-3-319-24999-5

 

 

 

ارتقاء امنیت وب با وف ایرانی