بررسی خواص و رفتار لایه میانی Ag-Cu-Ti-Sn-%5.1Zr در اتصال غیرهمجنس آلومینا به مس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان 84156-83111، ایران

2 مرکز آموزش مهارت‌های فنی و مهندسی، دانشگاه صنعتی اصفهان، اصفهان 84156-83111، ایران

چکیده

این مطالعه به‌منظور بررسی اثر هم‌افزایی عنصر زیرکونیوم در لایه میانی فعال لحیم‌کاری، با استفاده از لایه میانی چندجزئی طراحی شد. اتصال آلومینا به مس با استفاده از لایه‌های میانی فعال Ag-Cu-Ti-Sn و Ag-Cu-Ti-Sn-%5.1Zr با استفاده از روش لحیم‌کاری سخت القایی بررسی شد. اتصالات آلومینا به مس با لایه‌های میانی فعال Ag-Cu-Ti-Sn و Ag-Cu-Ti-Sn-%5.1Zr به‌ترتیب در دماهای 840 و 880 درجه سانتی‌گراد به مدت 15 دقیقه و در خلأ 6-10 میلی‌بار لحیم‌کاری شدند. ریزساختار اتصالات با استفاده از میکروسکوپ‌های نوری و الکترونی روبشی مجهز به آنالیز پراکندگی انرژی و خواص مکانیکی اتصالات با استفاده از آزمون استحکام برشی و آزمون ریزسختی ویکرز ارزیابی شدند. در اتصال آلومینا به مس با لایه میانی Ag-Cu-Ti-Sn، دو فاز TiO و Cu3Ti3O در ناحیه لایه واکنشی و ترکیبات یوتکتیک Ag-Cu پایه مس در ناحیه لحیم‌کاری، یافت شدند. در اتصال آلومینا به مس با لایه میانی Ag-Cu-Ti-Sn-%5.1Zr، دو فاز TiO و ZrO2 در ناحیه لایه واکنشی و دو فاز غنی از مس و نقره در ناحیه لحیم‌کاری مشاهده شد. استحکام برشی در اتصال لحیم‌کاری شده با لایه میانی Ag-Cu-Ti-Sn-%5.1Zr، 33 درصد بیشتر از اتصال لحیم‌کاری شده با لایه میانی Ag-Cu-Ti-Sn به‌دست آمد. ریزسختی در ناحیه لایه واکنشی اتصال با لایه میانی حاوی 5/1 درصد وزنی زیرکونیوم و بدون زیرکونیوم به‌ترتیب 248 و 146 ویکرز اندازه‌گیری شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Properties and Behavior of Ag-Cu-Ti-Sn-%5.1 Zr Filler Metal in Dissimilar Bonding of Alumina to Copper

نویسندگان [English]

  • M. Taheri 1
  • Gh. Azimi Roeen 2
  • A. Bahrami 1
1 Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2 Center of Engineering and Technical Skills Training, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

This study was intended to investigate the synergistic effect of zirconium element on the active filler metal, using a multi-component filler alloy. The bonding of alumina to copper was investigated using active filler metals, namely Ag-Cu-Ti-Sn and Ag-Cu-Ti-Sn-%5.1Zr, using the induction brazing method. Alumina/copper joining was done with active filler metals of Ag-Cu-Ti-Sn and Ag-Cu-Ti-Sn-%5.1Zr at temperatures of 840 and 880 °C, respectively, for 15 min under vacuum of 10-6 millibar. The microstructure of the joints were assessed using optical and scanning electron microscopes, equipped with energy dispersive spectroscopy and the mechanical properties of the joints were evaluated using the shear strength and the Vickers microhardness tests. Two phases of TiO and Cu3Ti3O were detected in the reaction layer area in alumina-copper joint with Ag-Cu-Ti-Sn filler metal. Ag-Cu eutectic compounds were also found in the brazing zone. In alumina-copper joint with Ag-Cu-Ti-Sn-%5.1Zr filler metal, two phases of TiO and ZrO2 were observed in the reaction layer area, and two phases rich in copper and silver were observed in the brazing zone. The shear strength, obtained in brazing joint with Ag-Cu-Ti-Sn-%5.1Zr filler, was 33% higher than that of in the brazing joint with Ag-Cu-Ti-Sn filler. The microhardness in the region of the reaction layer of the joint with filler metal containing 5.1 wt.% of zirconium and that without zirconium was measured as 248 and 146 Vickers, respectively.

کلیدواژه‌ها [English]

  • Active filler metal
  • Induction Brazing
  • Alumina
  • Microstructure
  • Mechanical properties
  1. Michálek M, Michálková M, Blugan G, Kuebler J. Strength of pure alumina ceramics above 1GPa. Ceram Int. 2018; 44(3): 3255-60. https://doi.org/10. 1016/j.ceramint.2010.07.029
  2. Wang JL, Yang ZW, Wang Y, Wang DP, Li HJ. Microstructural stability and mechanical properties of Al2O3/Kovar 4 J34 joint vacuum brazed using Ag-5Cu-1Al-1.25Ti (wt%) filler metal. J Manuf Process. 2021; 72: 553-64. https://doi.org/10.1016/j.jmapro. 2021.10.057
  3. Peng Y, Li J, Shi J, Li S, Xiong J. Microstructure and mechanical properties of Al2O3 ceramic and Ti2AlNb alloy joints brazed with Al2O3 particles reinforced Ag–Cu filler metal. Vacuum. 2021; 192:110430. https://doi.org/10.1016/j.vacuum.2021.110430
  4. Wang H, Wang P, Zhong Z, Cao J, Qi J. Microstructure evolution and mechanical properties of SiO2f/SiO2 composites joints brazed by bismuth glass. Ceram Int. 2022; 48(4): 5840-4. https://doi. org/10.1016/j.ceramint.2021.11.132
  5. Di Caprio F, Russo A, Manservigi C, Scigliano R, De Stefano Fumo M, Tescione D, et al. Damage tolerance evaluation of a C/C-SiC composite body flap of a re-entry vehicle. Compos Struct. 2021; 274: 114341. https://doi.org/10.1016/j.compstruct.2021.114341
  6. Fu W, Xue Y, Dai J, Song X, Hu S, Bian H, et al. Insights into the adsorption and interfacial products improving the wetting of the Ag-Ti/graphite and Cu-Ti/graphite systems: A first-principles calculation. Surf Interfaces. 2023; 38:102840. https://doi.org/10. 1016/j.surfin.2023.102840
  7. Rajendran SH, Hwang SJ, Jung JP. Active Brazing of Alumina and Copper with Multicomponent Ag-Cu-Sn-Zr-Ti Filler. Metals. 2021; 11(3):509. https://doi. org/10.3390/met11030509
  8. Cao Y, Yan J, Li N, Zheng Y, Xin C. Effects of brazing temperature on microstructure and mechanical performance of Al2O3/AgCuTi/Fe–Ni–Co brazed joints. J Alloys Compd. 2015; 650:30-6. https://doi.org/10.1016/j.jallcom.2015.07.237
  9. Wang Y, Liu M, Zhang H, Wen Z, Chang M, Feng G, et al. Fabrication of reliable ZTA composite/Ti6Al4V alloy joints via vacuum brazing method: Microstructural evolution, mechanical properties and residual stress prediction. J Eur Ceram.2021; 41(7):4273-83. https://doi.org/10.1016/ j.jeurceramsoc.2021.02.043
  10. Wang N, Wang DP, Yang ZW, Wang Y. Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals. Ceram Int. 2016; 42 (11):12815-24. https://doi.org/10.1016/j.ceramint.2016. 05.045
  11. Lan L, Yu J, Yang Z, Li C, Ren Z, Wang Q. Interfacial microstructure and mechanical characterization of silicon nitride/nickel-base superalloy joints by partial transient liquid phase bonding. Ceram Int. 2016; 42(1, Part B):1633-9. https://doi. org/10.1016/j.ceramint.2015.09.115
  12. Wang M, Tao X, Xu X, Miao R, Du H, Liu J, et al. High-temperature bonding performance of modified heat-resistant adhesive for ceramic connection. J Alloys Compd. 2016; 663:82-5. https://doi.org/10. 1016/j.jallcom.2015.12.116
  13. Halbig MC, Asthana R, Singh M. Diffusion bonding of SiC fiber-bonded ceramics using Ti/Mo and Ti/Cu interlayers. Ceram Int. 2015; 41(2, Part A):2140-9. https://doi.org/10.1016/j.ceramint.2014.10.014
  14. Kassam TA, Hari Babu N, Ludford N, Yan S, Howkins A. Secondary Phase Interaction at Interfaces of High-Strength Brazed Joints made using Liquid Phase Sintered Alumina Ceramics and Ag-Cu-Ti Braze Alloys. Sci Rep. 2018; 8(1):3352. https://doi.org/10.1038/s41598-018-20674-w
  15. Lin K-L, Singh M, Asthana R. Interfacial characterization of alumina-to-alumina joints fabricated using silver–copper–titanium interlayers. Mater Charact. 2014; 90: 40-51. https://doi.org/10.1016/j.matchar.2014. 01.009
  16. Fu W, Song XG, Hu SP, Chai JH, Feng JC, Wang GD. Brazing copper and alumina metallized with Ti-containing Sn0.3Ag0.7Cu metal powder. Mater Des. 2015; 87:579-85. https://doi.org/10.1016/j.matdes. 2015.08.081
  17. Shin J, Sharma A, Jung D-h, Jung JP. Effect of Sn Content on Filler and Bonding Characteristics of Active Metal Brazed Cu/Al2O3 Korean J Met Mater. 2018; 56(5):366-74. https://doi.org/10.3365/ KJMM.2018.56.5.366
  18. Kar A, Mandal S, Ghosh RN, Ghosh TK, Ray AK. Role of Ti diffusion on the formation of phases in the Al2O3–Al2O3 brazed interface. J Mater Sci. 2007; 42 (14): 5556-61. https://doi.org/10.1007/s10853-006-1092-6
  19. Stephens JJ, Hosking FM, Headley TJ, Hlava PF, Yost FG. Reaction layers and mechanisms for a Ti-activated braze on sapphire. Metall Mater Trans A. 2003; 34(12):2963-72. https://doi.org/10.1007/s11661-003-0195-9
  20. Jasim KM, Hashim FA, Yousif RH, Rawlings RD, Boccaccini AR. Actively brazed alumina to alumina joints using CuTi, CuZr and eutectic AgCuTi filler alloys. Ceram Int. 2010; 36(8):2287-95. https://doi.org/10.1016/j.ceramint.2010.07.029
  21. Hirnyj S, Indacochea E. Phase transformations in Ag70.5Cu26.5Ti3 filler alloy during brazing processes. Chem Met Alloys. 2008; 1. http://dx.doi. org/10.30970/cma1.0071
  22. Kelkar GP, Carim AH. Al solubility in M6X compounds in the Ti-Cu-O system. Mater Lett. 1995; 23(4):231-5. https://doi.org/10.1016/0167-577X(95)00029-1
  23. Ali M, Knowles KM, Mallinson PM, Fernie JA. Microstructural evolution and characterisation of interfacial phases in Al2O3/Ag–Cu–Ti/Al2O3 braze joints. Acta Mater. 2015; 96:143-58. https://doi.org/10. 1016/j.actamat.2015.05.048
  24. Raghava Simhan D, Mukhopadhyay P, Ghosh A. On segregation of Zr and wettability of active Ag-Cu-Zr alloy on cubic boron nitride surface. Mater Lett. 2017; 207: 183-6. https://doi.org/10.1016/j.matlet. 2017.07.080
  25. Zhu H, Min J, Li J, Ai Y, Ge L, Wang H. In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al–ZrO2 system. Compos Sci Technol. 2010; 70(15):2183-9. https://doi.org/10.1016/j.compscitech.2010.08.021
  26. Kassam TA, Nadendla HB, Ludford N, Buisman I. The Effect of Post-grinding Heat Treatment of Alumina and Ag-Cu-Ti Braze Preform Thickness on the Microstructure and Mechanical Properties of Alumina-to-Alumina-Brazed Joints. J Mater Eng Perform. 2016; 25(8):3218-30. https://doi.org/10.1007/ s11665-016-2070-z
  27. Sun G, Feng X, Wu X, Zhang S, Wen B. Is hardness constant in covalent materials? J Mater Sci Technol. 2022; 114:215-21. https://doi.org/10.1016/j.jmst.2021. 10.032

 

 

 

ارتقاء امنیت وب با وف ایرانی