اثر افزودن تنگستن بر مشخصات و عملکرد خوردگی پوشش اکسیداسیون الکترولیتی پلاسمائی ایجاد شده روی تیتانیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

این مقاله به بررسی خواص مقاومت به خوردگی پوشش‌های ایجاد شده روی تیتانیوم از طریق اکسیداسیون الکترولیتی پلاسمائی در حضور سدیم تنگستات ( 1 و g/l 3) پرداخته است. نمونه‌های پوشش داده شده تحت آزمون‌های خوردگی در محلول کلرید سدیم قرار گرفتند تا عملکرد حفاظتی آن‌ها ارزیابی شود. نمونه‌هایی که حاوی تنگستن بودند، دارای اندازه تخلخل‌های کوچک‌تر با توزیع یکنواخت‌تر بودند. همچنین پوشش‌های حاوی تنگستن دارای فاز آناتاز بودند، در‌حالی‌که پوشش فاقد تنگستن دارای هر دو فاز آناتاز و روتایل بود. نتایج آزمون طیف‌سنجی امپدانس الکتروشیمیائی نشان‌دهنده عملکرد سدی قوی پوشش‌های حاوی تنگستن و پایداری آن‌ها با گذشت زمان غوطه‌وری بود. پوشش با بیش‌ترین درصد تنگستن و ضخامت حاصل از حمام با g/l 3 تنگستات دارای بیش‌ترین مقاومت سدی (kΩ.cm2 886) در مقایسه با سایر پوشش‌ها بود. با افزایش زمان غوطه‌وری، این پوشش با افزایش مقاومت سدی توانست به بالاترین مقدار (kΩ.cm2 997) پس از 63 روز غوطه‌وری برسد. این در‌حالی بود که کم‌ترین میزان مقاومت سدی مربوط به نمونه فاقد تنگستن بود که افت شدیدی را با گذشت زمان غوطه‌وری تجربه کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Tungsten Addition on Characteristics and Corrosion Performance of Plasma Electrolytic Oxidation Coating Created on Titanium

نویسندگان [English]

  • R. Yazdekhasti
  • K. Raeissi
Department of Materials Engineering, Isfahan University of Technology
چکیده [English]

This paper investigates the corrosion resistance properties of coatings produced by plasma electrolytic oxidation (PEO) on titanium in the presence of sodium tungstate (1 and 3 g/l). The coated samples were subjected to corrosion tests in sodium chloride solution to evaluate their protective performance. The samples containing tungsten had smaller porosity with a more uniform distribution. Also, the tungsten-containing coatings had an anatase phase, while the tungsten-free coating had both anatase and rutile phases. The results of the electrochemical impedance spectroscopy test showed the strong barrier performance of tungsten-containing coatings and their stability with the passage of immersion time. The coating with the highest percentage of tungsten and the thickness obtained from the bath with 3 g/l tungstate had the highest barrier resistance (886 kΩ.cm2) compared to other coatings. By increasing the immersion time, this coating could reach the highest value (997 kΩ.cm2) after 63 days of immersion by increasing the barrier resistance. This was while the lowest barrier resistance was related to the tungsten-free sample, which experienced a severe drop with increasing the immersion time.

کلیدواژه‌ها [English]

  • Corrosion resistance
  • Coating
  • Plasma electrolytic oxidation
  • Sodium tungstate
  • Sodium chloride
  1. Coto M, Troughton SC, Knight P, Joshi R, Francis R, Kumar RV, Clyne TW. Optimization of the microstructure of TiO2 photocatalytic surfaces created by Plasma Electrolytic Oxidation of titanium substrates. Surf Coat Tech. 2021; 411: 127000. https://doi.org/10.1016/j.surfcoat.2021.127000
  2. Shokouhfar M, Dehghanian C, Montazeri M, Baradaran AJ. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II. Appl Surf Sci. 2012; 258(7): 2416-2423. https://doi.org/10.1016/j.apsusc.2011.10.064
  3. Khan RH, Yerokhin AL, Li X, Dong H, Matthews A. Influence of current density and electrolyte concentration on DC PEO titania coatings. Surf Eng. 2014; 30(2): 102-108. https://doi.org/10.1179/1743294413Y.0000000225
  4. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008; 48(5): 430-441. https://doi.org/10.1080/ 10408390701425615
  5. Darband GB, Aliofkhazraei M, Hamghalam P, Valizade N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J Magnes Alloy. 2017; 5(1):74-132. https://doi.org/10.1016/j.jma.2017.02.004
  6. White L, Koo Y, Yun Y, Sankar J. TiO2 deposition on AZ31 magnesium alloy using plasma electrolytic oxidation. J Nanomater. 2013; 1:319437. https://doi. org/10.1155/2013/319437
  7. Tsai DS, Chou CC. Review of the soft sparking issues in plasma electrolytic oxidation. Metals 2018; 8(2):105. https://doi.org/10.3390/met8020105
  8. Hussein RO, Northwood DO, Su JF, Nie X. A study of the interactive effects of hybrid current modes on the tribological properties of a PEO (plasma electrolytic oxidation) coated AM60B Mg-alloy. Surf Coat Tech. 2013; 215: 421-430. https://doi.org/10. 1016/j.surfcoat.2012.08.082
  9. Jiang BL, Wang YM. Plasma electrolytic oxidation treatment of aluminium and titanium alloys. In: Liang Y, editor. Surface engineering of light alloys. Cambridge: Woodhead Publishing; 2010. p. 110-154. https://doi.org/10.1533/9781845699451.2.110
  10. Atrens A, Winzer N, Dietzel W, Srinivasan PB, Song GL. Stress corrosion cracking (SCC) of magnesium (Mg) alloys. In: Song GL, editor. Corrosion of magnesium alloys. Cambridge: Woodhead Publishing; 2011. p. 299-364. https://doi.org/10.1533/9780857091413.3.299
  11. Liverani E, Balbo A, Monticelli C, Leardini A, Belvedere C, Fortunato A. Corrosion resistance and mechanical characterization of ankle prostheses fabricated via selective laser melting. Procedia CIRP 2017; 65:25-31. https://doi.org/10.1016/j.procir.2017.04.037
  12. Ramazani A. Effect of potassium permanganate additive and current pulse waveform on the structure and corrosion behavior of plasma electrolytic oxidation coating on 7075 aluminum alloy. MSc Thesis. Isfahan University of Technology, Department of Materials Engineering; 2017.
  13. Nie X, Leyland A, Matthews A. Low temperature deposition of Cr (N)/TiO2 coatings using a duplex process of unbalanced magnetron sputtering and micro-arc oxidation. Surf Coat Technol. 2000; 133: 331-337. https://doi.org/10.1016/S0257-8972(00)00953-1
  14. Yan H, Liu W, Yu Z, Liu B, Liu C, Wang T, Liu Y, Wu L, Ma Y. Effect of Sodium Tungstate on the Microstructure and Properties of Micro-Arc Oxidized Coatings Formed on 2A12 Aluminum Alloy. Mater Eng Perform. 2021; 30(10):7741-7751. https://doi. org/10.1007/s11665-021-05967-y
  15. Manojkumar P, Lokeshkumar E, Saikiran A, Govardhanan B, Ashok M, Rameshbabu N. Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation. J Alloys Compd. 2020; 825:154092. https://doi.org/10.1016/j.jallcom.2020.154092
  16. Hakimizad A, Raeissi K, Santamaria M, Asghari M. Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4 containing solution: From unipolar to soft-sparking regime. Electrochim Acta 2018; 284: 618-629. https://doi.org/10.1016/j. electacta.07.200
  17. Choudhury B, Dey M, Choudhury A. Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci. 2014; 4:499-506. https://doi.org/10.1007/s13204-013-0226-9
  18. Torres-Ceron DA, Amaya-Roncancio S, Riva JS, Vargas-Eudor A, Escobar-Rincon D, Restrepo-Parra E. Incorporation of P5+ and P3− from phosphate precursor in TiO2: P coatings produced by PEO: XPS and DFT study. Surf Coat Tech. 2021; 421:127437. https://doi.org/10.1016/j.surfcoat.2021.127437
  19. Stojadinović S, Tadić N, Radić N, Grbić B, Vasilić R. Effect of Tb3+ doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium. Surf Coat Tech. 2018; 337: 279-289. https://doi.org/10.1016/j.surfcoat.2018.01.033
  20. Wang Y, Wang J, Zhang J, Zhang Z. Characteristics of anodic coatings oxidized to different voltage on AZ91D Mg alloy by micro‐arc oxidization technique. Mater Corros. 2005; 56(2): 88-92. https://doi.org/10. 1002/maco.200403822
  21. Hussein RO, Nie X, Northwood DO. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochim Acta 2013; 112:111-119. https://doi.org/ 10.1016/j.electacta.2013.08.137
  22. Sundararajan G, Krishna LR. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf Coat Tech. 2003; 167(2-3): 269-277. https://doi.org/10.1016/ S0257-8972(02)00918-0
  23. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003; 48(5-8): 53-229. https://doi.org/ 10.1016/S0167-5729(02)00100-0
  24. Chaharmahali R, Fattah-alhosseini A, Karbasi M, Giannakis S, Bahramian H, Oulego P. A systematic study on modulation of plasma electrolytic oxidation parameters for optimizing photocatalytic coatings on titanium substrates. J Alloys Compd. 2023; 963: 171234. https://doi.org/10.1016/j.jallcom.2023.171234

 

 

 

ارتقاء امنیت وب با وف ایرانی