ساخت و مشخصه‌یابی هیدروژل کامپوزیتی فیبروئین ابریشم اصلاح شده/ چارچوب فلزی– آلی مبتنی بر روی با استفاده از واکنش فنتون برای کاربردهای پزشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

هیدروژل‌ها به‌عنوان داربست‌های سه‌بعدی آب‌دوست، نقش مهمی در جذب مایعات زیستی و فراهم‌کردن پایداری مکانیکی برای بازسازی بافت دارند. در این پژوهش، هیدروژل‌های کامپوزیتی جدیدی بر پایه فیبروئین ابریشم اصلاح‌شده با گروه‌های تیول و چارچوب فلزی-آلی (Zn-Bio MOF) حاوی یون روی و لیگاند آدنین، برای کاربردهای مهندسی بافت طراحی و سنتز شدند. فیبروئین ابریشم خالص استخراج و با افزودن گروه تیول از طریق اتصال ال-سیستئین اصلاح شد. تغییرات در طیف‌سنجی مادون‌قرمز تبدیل فوریه شامل کاهش شدت پیک‌های جذب در 1650 و 3300 سانتی‌متر⁻¹ و ظهور پیک‌های جدید مرتبط با پیوندهای S-S و S-H، تأییدکننده این اصلاحات بود. چارچوب فلزی-آلی (Zn-Bio MOF) با یون روی (II) و لیگاند آدنین از طریق فرایند هیدروترمال سنتز شد که میانگین قطر نانوذرات آن برابر با 0/12±0/39 نانومتر و مساحت سطح ویژه 1138/3 مترمربع بر گرم بود. سه نوع هیدروژل کامپوزیتی شامل هیدروژل بر پایه فیبروئین ابریشم اصلاح‌شده، هیدروژل بر پایه فیبروئین ابریشم اصلاح‌شده ژل‌شده با واکنش فنتون و هیدروژل کامپوزیتی حاوی Zn-Bio MOF در غلظت‌های مختلف تهیه شد. مشخصه‌یابی مواد با روش‌های میکروسکوپ الکترونی روبشی و پراش پرتو ایکس انجام شد. بررسی خواص تورم و تخریب نشان داد که هیدروژل‌های حاوی نانوذرات Zn-Bio MOF رفتار مکانیکی بهتری با افزایش مدول فشاری و چقرمگی، کاهش وزن (حدود 30% طی 72 ساعت) و تورم کنترل‌شده‌ای از خود نشان دادند. این نتایج نشان می‌دهد که هیدروژل‌های کامپوزیتی Zn-Bio MOF پتانسیل بالایی برای استفاده در مهندسی بافت و کاربردهای زیستی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication and Characterization of Modified Silk Fibroin/Zinc-Based Metal-Organic Framework Composite Hydrogel Using Fenton Reaction for Medical Applications

نویسندگان [English]

  • M.K. Vojdanpak
  • K. Mohagheghian
  • M. Kharaziha
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Hydrogels, as hydrophilic 3D scaffolds, play an important role in absorbing biological fluids and providing mechanical stability for tissue regeneration. In this study, novel composite hydrogels based on silk fibroin modified with thiol groups and metal-organic framework (Zn-Bio MOF) containing zinc ion and adenine ligand were designed and synthesized for tissue engineering applications. Pure silk fibroin was extracted and modified by adding thiol groups via L-cysteine ​​linkage. Changes in Fourier transform infrared spectroscopy included a decrease in the intensity of absorption peaks at 1650 and 3300 cm⁻¹ and the appearance of new peaks associated with S-S and S-H bonds, confirming these modifications. Metal-organic framework (Zn-Bio MOF) was synthesized with zinc (II) ion and adenine ligand through hydrothermal process, with an average diameter of 0.39±0.12 nm and a specific surface area of ​​1138.3 m2/g. Three types of composite hydrogels including modified silk fibroin-based hydrogel, modified silk fibroin-based hydrogel gelled by Fenton reaction and composite hydrogel containing Zn-Bio MOF at different concentrations were prepared. Material characterization was performed by scanning electron microscopy and X-ray diffraction. Investigation of swelling and degradation properties showed that hydrogels containing Zn-Bio MOF nanoparticles showed better mechanical behavior with increased compressive modulus and toughness, weight loss (about 30% within 72 hours) and controlled swelling. These results indicate that Zn-Bio MOF composite hydrogels have great potential for use in tissue engineering and biological applications.

کلیدواژه‌ها [English]

  • Silk
  • Metal-organic framework
  • Zinc
  • Fenton reaction
  • Hydrogel
  1. Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik D Das, et al. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm [Internet]. 2024 Oct 7;21(10):4827–48. Available from: https://doi.org/10.1021/acs.molpharmaceut.4c00595
  2. Wagh P, Nawani DN, Vaidya DV. HYDROGELS: A VERSATILE BIOMATERIAL REVOLUTIONIZING SCIENCE AND APPLICATIONS. In: Futuristic Trends in Biotechnology Volume 3 Book 10 [Internet]. Iterative International Publisher, Selfypage Developers Pvt Ltd; 2024. p. 27–35. Available from: https://www.iipseries.org/viewpaper.php?pid=1027&pt=hydrogels-a-versatile-biomaterial-revolutionizing-science-and-applications
  3. Madappura AP, Madduri S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput Struct Biotechnol J [Internet]. 2023;21:4868–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2001037023003689
  4. Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B [Internet]. 2021;9(5):1238–58. Available from: http://xlink.rsc.org/?DOI=D0TB02099K
  5. Qi Z, Tao X, Tan G, Tian B, Zhang L, Kundu SC, et al. Electro-responsive silk fibroin microneedles for controlled release of insulin. Int J Biol Macromol [Internet]. 2023 Jul;242:124684. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023015787
  6. Liang J, Zhang X, Chen Z, Li S, Yan C. Thiol–Ene Click Reaction Initiated Rapid Gelation of PEGDA/Silk Fibroin Hydrogels. Polymers (Basel) [Internet]. 2019 Dec 14;11(12):2102. Available from: https://www.mdpi.com/2073-4360/11/12/2102
  7. Zhang W, Liu C, Liu Z, Zhao C, Zhu J, Ren J, et al. A Cell Selective Fluoride-Activated MOF Biomimetic Platform for Prodrug Synthesis and Enhanced Synergistic Cancer Therapy. 2022;
  8. Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metab Rev [Internet]. 2019 Jul 3;51(3):356–77. Available from: https://www.tandfonline.com/doi/full/10.1080/03602532.2019.1632887
  9. Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, et al. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. Water Sci Technol. 2022;86(9):2303–35.
  10. Moharramnejad M, Ehsani A, Salmani S, Shahi M, Malekshah RE, Robatjazi ZS, et al. Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. J Inorg Organomet Polym Mater [Internet]. 2022 Sep 18;32(9):3339–54. Available from: https://link.springer.com/10.1007/s10904-022-02385-y
  11. Dong JP, Shi ZZ, Li B, Wang LY. Synthesis of a novel 2D zinc( <scp>ii</scp> ) metal–organic framework for photocatalytic degradation of organic dyes in water. Dalt Trans [Internet]. 2019;48(47):17626–32. Available from: http://xlink.rsc.org/?DOI=C9DT03727F
  12. Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal–Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. Langmuir [Internet]. 2024 Oct 29;40(43):22477–503. Available from: https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02795
  13. Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, et al. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv. 2024 Sep;14(41):30201–29.
  14. Qiao M, Xu Z, Pei X, Liu Y, Wang J, Chen J, et al. Nano SIM@ZIF-8 modified injectable High-intensity biohydrogel with bidirectional regulation of osteogenesis and Anti-adipogenesis for bone repair. Chem Eng J [Internet]. 2022 Apr;434:134583. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894722000912
  15. Li X, Meng Z, Guan L, Liu A, Li L, Nešić MD, et al. Glucose-Responsive hydrogel optimizing Fenton reaction to eradicate multidrug-resistant bacteria for infected diabetic wound healing. Chem Eng J [Internet]. 2024 May;487:150545. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1385894724020321
  16. Choi J, McGill M, Raia NR, Hasturk O, Kaplan DL. Silk Hydrogels Crosslinked by the Fenton Reaction. Adv Healthc Mater. 2019 Sep;8(17):e1900644.
  17. Choi J, Hastürk O, Mu X, Sahoo JK, Kaplan D. Silk Hydrogels with Controllable Formation of Dityrosine, 3,4-Dihydroxyphenylalanine, and 3,4-Dihydroxyphenylalanine–Fe 3+ Complexes through Chitosan Particle-Assisted Fenton Reactions. Biomacromolecules. 2021 Jan 6;22.
  18. Barros JAG, Fechine GJM, Alcantara MR, Catalani LH. Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer (Guildf) [Internet]. 2006 Dec;47(26):8414–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0032386106012134
  19. Qin G, Rivkin A, Lapidot S, Hu X, Preis I, Arinus SB, et al. Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials [Internet]. 2011 Dec;32(35):9231–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961211006752
  20. Sun L, Zhang S, Zhang J, Wang N, Liu W, Wang W. Fenton reaction-initiated formation of biocompatible injectable hydrogels for cell encapsulation. J Mater Chem B [Internet]. 2013;1(32):3932. Available from: https://xlink.rsc.org/?DOI=c3tb20553c
  21. Teimouri A, Ghorbanian L, Najafi Chermahini A, Emadi R. Fabrication and characterization of silk/forsterite composites for tissue engineering applications. Ceram Int [Internet]. 2014 Jun;40(5):6405–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0272884213016672
  22. Talusig JM, Murphy AR. Synthesis and Characterization of Highly Thiolated Silk Fibroin. Macromol Chem Phys [Internet]. 2023 Nov 27; Available from: https://onlinelibrary.wiley.com/doi/10.1002/macp.202300340
  23. Nogueira F, Granadeiro L, Mouro C, Gouveia IC. Antimicrobial and antioxidant surface modification toward a new silk-fibroin (SF)-l-Cysteine material for skin disease management. Appl Surf Sci [Internet]. 2016 Feb;364:552–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169433215031797
  24. Florczak A, Jastrzebska K, Bialas W, Mackiewicz A, Dams-Kozlowska H. Optimization of spider silk sphere formation processing conditions to obtain carriers with controlled characteristics. J Biomed Mater Res A. 2018 Dec;106(12):3211–21.
  25. Yang Q, Xu Q, Jiang HL. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev [Internet]. 2017;46(15):4774–808. Available from: http://dx.doi.org/10.1039/C6CS00724D
  26. Lucena GN, Alves RC, Abuçafy MP, Chiavacci LA, da Silva IC, Pavan FR, et al. Zn-based porous coordination solid as diclofenac sodium carrier. J Solid State Chem [Internet]. 2018;260:67–72. Available from: https://www.sciencedirect.com/science/article/pii/S0022459618300203
  27. Lu H, Tian H, Wang C, Xu S. Designing and controlling the morphology of spherical molecularly imprinted polymers. Mater Adv [Internet]. 2020;1(7):2182–201. Available from: https://xlink.rsc.org/?DOI=D0MA00415D
  28. Khoshhal S, Ghoreyshi AA, Jahanshahi M, Mohammadi M. Study of the temperature and solvent content effects on the structure of Cu–BTC metal organic framework for hydrogen storage. RSC Adv [Internet]. 2015;5(31):24758–68. Available from: http://dx.doi.org/10.1039/C5RA01890K
  29. Mikšík F, Miyazaki T, Thu K. Adsorption Isotherm Modelling of Water on Nano-Tailored Mesoporous Silica Based on Distribution Function. Energies [Internet]. 2020 Aug 17;13(16):4247. Available from: https://www.mdpi.com/1996-1073/13/16/4247
  30. Yamada T. Iron-Catalyzed C–H Alkylamination of Tyrosine Derivatives. Org Lett [Internet]. 2024 Jun 28;26(25):5358–63. Available from: https://pubs.acs.org/doi/10.1021/acs.orglett.4c01764
  31. Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step‐Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Adv Mater [Internet]. 2021 Jun 14;33(25). Available from: https://onlinelibrary.wiley.com/doi/10.1002/adma.202006362
  32. Kohar R, Ghosh M, Sawale JA, Singh A, Rangra NK, Bhatia R. Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems. AAPS PharmSciTech [Internet]. 2024 Jan 22;25(1):17. Available from: https://link.springer.com/10.1208/s12249-024-02731-y
  33. Zirehpour A, Rahimpour A, Khoshhal S, Firouzjaei MD, Ghoreyshi AA. The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Adv [Internet]. 2016;6(74):70174–85. Available from: https://xlink.rsc.org/?DOI=C6RA14591D
  34. Collins MN, Birkinshaw C. Morphology of crosslinked hyaluronic acid porous hydrogels. J Appl Polym Sci [Internet]. 2011 Apr 15;120(2):1040–9. Available from: https://onlinelibrary.wiley.com/doi/10.1002/app.33241
  35. Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler Thromb Vasc Biol [Internet]. 2023 Aug;43(8). Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.122.318235
  36. Li Q, Ma W, Ma H, Shang H, Qiao N, Sun X. Synthesis and Characterization of Temperature‐/pH‐Responsive Hydrogels for Drug Delivery. ChemistrySelect [Internet]. 2023 Jan 23;8(3). Available from: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202204270
  37. Zareie C, Seifi A, Bahramian AR. Double networks hybrid hydrogels of silica nanoparticles/polyacrylamide: Network stiffness, viscoelastic, mechanical and adhesion properties. J Dispers Sci Technol [Internet]. 2024 Apr 17;1–11. Available from: https://www.tandfonline.com/doi/full/10.1080/01932691.2024.2342434
  38. Wang Q, Zhang Y, Ma Y, Wang M, Pan G. Nano-crosslinked dynamic hydrogels for biomedical applications. Mater Today Bio [Internet]. 2023 Jun;20:100640. Available from: https://linkinghub.elsevier.com/retrieve/pii/S259000642300100X
  39. Su D, Jiang L, Chen X, Dong J, Shao Z. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces. 2016;8(15):9619–28.
  40. Haghighattalab M, Kajbafzadeh A, Baghani M, Gharehnazifam Z, Jobani BM, Baniassadi M. Silk Fibroin Hydrogel Reinforced With Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Front Bioeng Biotechnol [Internet]. 2022 Jul 15;10. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2022.891166/full

 

 

 

ارتقاء امنیت وب با وف ایرانی