اثر فشار گاز و فاصله پاشش فرایند پاشش سرد بر خواص پوشش‌های فلز روی بر بستر فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش مهندسی مواد، دانشکده مهندسی معدن و مواد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مقدمه و اهداف: خواص پوشش‌های حاصل از پاشش سرد به متغیرهای فرایند وابسته است. هدف از این پژوهش، بررسی اثر فشار گاز و فاصله پاشش در فرایند پاشش سرد فلز روی بر بستر فولاد کم‌کربن است. 
مواد و روش‌ها: در این پژوهش، ابتدا پودر فلز روی در فشارهای 20 و 30 بار و فواصل پاشش 20 و 30 میلی‌متر پاشش شدند. ریزساختار پوشش‌های ایجادشده با میکروسکوپ‌های نوری و الکترونی روبشی بررسی و ریزسختی پوشش‌ها اندازه‌گیری شد. سپس، پوشش‌ منتخب و بستر فولادی تحت آزمون‌ خوردگی پلاریزاسیون تافل قرار گرفتند.
یافته‌ها: نتایج نشان داد که افزایش فشار گاز از 20 به 30 بار باعث کاهش تخلخل و افزایش ریزسختی ناشی از تغییرشکل بیشتر می‌شود. همچنین در فشار ثابت، فاصله پاشش 20 میلی‌متر، کم‌ترین تخلخل و بیش‌ترین ریزسختی را به دلیل دمای بالاتر ذرات هنگام برخورد به بستر دارد. نتایج به‌دست آمده از آزمون پلاریزاسیون نشان داد که پوشش نسبت به بستر ماهیت فداشونده دارد و چگالی جریان خوردگی را 48 درصد و نرخ خوردگی را 33 درصد نسبت به بستر کاهش می‌دهد.
نتیجه‌گیری: در این پژوهش، تأثیر فشار گاز و فاصله پاشش در فرایند پاشش سرد فلز روی بر بستر فولاد کم‌کربن بررسی شد. نتایج نشان داد که افزایش فشار گاز از 20 به 30 بار و کاهش فاصله پاشش از 30 به 20 میلی‌متر باعث بهبود تخلخل و افزایش ریزسختی پوشش‌ها می‌شود. یافته‌های این تحقیق، می‌تواند در بهینه‌سازی متغیرهای فرایند پاشش سرد فلز روی برای استفاده در صنایع مختلفی مانند خودروسازی، نیروگاهی و زیرساخت‌های دریایی به کار رود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Gas Pressure and Stand-Off Distance on the Properties of Cold Sprayed Zinc on Steel Substrate

نویسندگان [English]

  • Mohammad Hadi Khanbabaee Saatloo
  • Amir Abdollah-Zadeh
  • Rajab Ali Seraj
Department of Materials Engineering, Faculty of Mining and Materials Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Introduction and Objectives: The properties of coatings deposited by cold spray depend on the parameters of the process. The aim of this research is to investigate the effect of gas pressure and stand-off distance of cold spray process of zinc on a low carbon steel substrate.
Materials and Methods: In this research, zinc powder was sprayed at pressures of 20 and 30 bar and stand-off distances of 20 and 30 mm. The microstructure of the coatings was investigated using optical and scanning electron microscope and the micro-hardness of the coatings was measured. Then, the selected coating and steel substrate were subjected to polarization corrosion test.
Results: The results showed that increasing the gas pressure from 20 to 30 bar decreased the porosity and increased the micro-hardness due to further deformation. Also, for a constant pressure, the stand-off distance of 20 mm has the lowest porosity and the highest micro-hardness due to the higher temperature of the particles when impact the substrate. The results obtained from the polarization test show that the coating has a sacrificial nature compared to the substrate and reduces the corrosion current density by 48% and corrosion rate by 33% compared to the substrate.
Conclusion: In this study, the effect of gas pressure and stand-off distance of cold spray process of zinc on low carbon steel substrate was investigated. The results showed that increasing the gas pressure from 20 to 30 bar and reducing the stand-off distance from 30 to 20 mm improved porosity and increased coatings micro-hardness. The results of this study can be used to optimize the parameters of the cold spraying of zinc for use in various industries such as automotive, power plants and marine infrastructure.

کلیدواژه‌ها [English]

  • Cold spray
  • Steel
  • Zinc
  • Porosity
  • Corrosion resistance
  1. Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods. J RSC Advances 2017;7(8): 4580–610. https://doi.org/10.1039/C6RA25094G
  2. Marder AR. The metallurgy of zinc-coated steel. Prog Mater Sci. 2000; 45(3): 191–271. https://doi. org/10.1016/S0079-6425(98)00006-1
  3. Maledi NB, Oladijo OP, Botef I, Ntsoane TP, Madiseng A, Moloisane L. Influence of cold spray parameters on the microstructures and residual stress of Zn coatings sprayed on mild steel. Surf Coat Technol. 2017;318:106–13. https://doi.org/10.1016/ j.surfcoat.2017.03.062
  4. Vinay G, Chavan NM, Kumar S, Jyothirmayi A, Bodapati BR. Improved microstructure and properties of cold sprayed zinc coatings in the as sprayed condition. Surf Coat Technol. 2022;438 (March): https://doi.org/10.1016/j.surfcoat.2022.128392
  5. Tafreshi M, Allahkaram SR, Farhangi H. Comparative study on structure, corrosion properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings. Mater Chem Phys. 2016;183: 263–72. https://doi.org/10.1016/j.matchemphys.2016. 08.026
  6. Lapushkina E, Yuan S, Mary N, Adrien J, Ogawa K, Normand B. Contribution in optimization of Zn Cold-sprayed coating dedicated to corrosion applications. Surf Coat Technol. 2020; 400(July): 126193. https://doi.org/10.1016/j.surfcoat.2020.126193
  7. Güleç A, Cevher Ö, Türk A, Ustel F, Yılmaz F. Accelerated corrosion behaviors of Zn, Al and Zn/15Al coatings on a steel surface. Mater Tehnol. 2011;45.5:477-482.
  8. Chavan NM, Kiran B, Jyothirmayi A, Phani PS, Sundararajan G. The corrosion behavior of cold sprayed zinc coatings on mild steel substrate. J Therm Spray Technol. 2013; 22(4): 463–70. https://doi.org/10.1007/s11666-013-9893-z
  9. Assadi H, Kreye H, Gärtner F, Klassen T. Cold spraying – A materials perspective. Acta Mater. 2016;116:382–407. https://doi.org/10.1016/j.actamat. 2016.06.034
  10. Goyal T, Walia RS, Sidhu TS. Effect of parameters on coating density for cold spray process. Mater Manuf Process. 2012;27(2):193–200. https://doi.org/ 10.1080/10426914.2011.566906
  11. Srikanth A, Basha GMT, Venkateshwarlu B. A brief review on cold spray coating process. Mater Today Proc. 2020; 22: 1390–7. https://doi.org/10.1016/j.matpr.01.482
  12. Rokni MR, Nutt SR, Widener CA, Champagne VK, Hrabe RH. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J Therm Spray Technol. 2017; 26:1308–55. https://doi.org/10.1007/s11666-017-0575-0
  13. Singh H, Sidhu TS, Kalsi SBS. Cold spray technology: Future of coating deposition processes. Frat Integrita Strutt. 2012;22:69–84. https://doi.org/ 10.3221/IGF-ESIS.22.08
  14. Assadi H, Gärtner F, Stoltenhoff T, Kreye H. Bonding mechanism in cold gas spraying. Acta Mater. 2003;51 (15):4379–94. https://doi.org/10.1016/S1359-6454(03)00274-X
  15. Champagne VK, Helfritch DJ, Trexler MD, Gabriel The effect of cold spray impact velocity on deposit hardness. Model Simul Mater Sci Eng. 2010; 18(6). http://dx.doi.org/10.1088/0965-0393/18/6/065011
  16. Champagne V, Helfritch D. The unique abilities of cold spray deposition. Int Mater Rev. 2016;61(7): 437–55. https://doi.org/10.1080/09506608.2016.1194948
  17. Schmidt T, Gärtner F, Assadi H, Kreye H. Development of a generalized parameter window for cold spray deposition. Acta Mater. 2006;54(3):729–42. https://doi.org/10.1016/j.actamat.2005.10.005
  18. Sharma MM, Eden TJ, Golesich BT. Effect of surface preparation on the microstructure, adhesion, and tensile properties of cold-sprayed aluminum coatings on AA2024 substrates. J Therm Spray Technol. 2015;24:410–22. https://doi.org/10.1007/ s11666-023-01585-3
  19. Li CJ, Li WY, Wang YY. Formation of metastable phases in cold-sprayed soft metallic deposit. Surf Coat Technol. 2005;198(1-3):469–73. https://doi.org/ 10.1016/j.surfcoat.2004.10.063
  20. Legoux JG, Irissou E, Moreau C. Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. J Therm Spray Technol. 2007;16(5–6):619–26. https://doi.org/ 10.1007/s11666-007-9091-y
  21. Li WY, Li CJ, Yang GJ. Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating. Appl Surf Sci. 2010;257(5): 1516–23. https://doi.org/10.1016/j.apsusc.2010.08.089
  22. Xie C, Li H, Zhou X, Sun C. Corrosion behavior of cold sprayed pure zinc coating on magnesium. Surf Coat Technol. 2019;374:797–806. https://doi.org/10. 1016/j.surfcoat.2019.06.068
  23. Hussain T, McCartney DG, Shipway PH, Zhang D. Bonding mechanisms in cold spraying: The contributions of metallurgical and mechanical components. J Therm Spray Technol. 2009;18:364–79. https://doi.org/10.1007/s11666-009-9298-1
  24. Seraj RA, Abdollah-zadeh A, Dosta S, Assadi H, Cano IG. Comparison of Stellite coatings on low carbon steel produced by CGS and HVOF spraying. Surf Coat Technol. 2019;372:299–311. https://doi. org/10.1016/j.surfcoat.2019.05.022
  25. Sudharshan Phani P, Srinivasa Rao D, Joshi S V., Sundararajan G. Effect of process parameters and heat treatments on properties of cold sprayed copper coatings. J Therm Spray Technol. 2007;16:425–34. https://doi.org/10.1007/s11666-007-9048-1
  26. Henao J, Concustell A, Cano IG, Cinca N, Dosta S, Guilemany JM. Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings. J Alloys Compd. 2015;622: 995–9. https://doi.org/10.1016/j.jallcom.2014.11.037
  27. Chafjiri ZS, Abdollah-zadeh A, Seraj RA, Azarniya A. Effect of cold spray processing parameters on the microstructure, wear, and corrosion behavior of Cu and Cu–Al2O3 coatings deposited on AZ31 alloy substrate. Results Eng. 2023;20:101594. https://doi. org/10.1016/j.rineng.2023.101594
  28. Adachi S, Ueda N. Effect of cold-spray conditions using a nitrogen propellant gas on AISI 316L stainless steel-coating microstructures. Coatings 2017; 7(7): 87. https://doi.org/10.3390/coatings7070087
  29. Zahiri SH, Fraser D, Gulizia S, Jahedi M. Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper. J Therm Spray Technol. 2006;15:422–30. https://doi.org/10.1361/ 105996306X124437
  30. Chun DM, Choi JO, Lee CS, Ahn SH. Effect of stand-off distance for cold gas spraying of fine ceramic particles (< 5 μm) under low vacuum and room temperature using nano-particle deposition system (NPDS). Surf Coat Technol. 2012;206(8–9): 2125–32. https://doi.org/10.1016/j.surfcoat.2011.09.043
  31. Li WY, Zhang C, Guo XP, Zhang G, Liao HL, Li CJ, et al. Effect of standoff distance on coating deposition characteristics in cold spraying. Mater Des. 2008;29(2): 297–304. https://doi.org/10.1016/j.matdes.2007.005
  32. Dai S, Cui M, Li J, Zhang M. Cold Spray Technology and Its Application in the Manufacturing of Metal Matrix Composite Materials with Carbon-Based Reinforcements. Coatings 2024;14(7):822. https://doi.org/10.3390/coatings14070822
  33. Tang J, Saha GC, Richter P, Kondás J, Colella A, Matteazzi P. Effects of Post-spray Heat Treatment on Hardness and Wear Properties of Ti-WC High-Pressure Cold Spray Coatings. J Therm Spray Technol. 2018;27 (7):1153–64. https://doi.org/10.1007/s11666-018-0762-7
  34. Marzbanrad B, Toyserkani E, Jahed H. Characterization of single- and multilayer cold-spray coating of Zn on AZ31B. Surf Coat Technol. 2021;416: 127155. https://doi.org/10.1016/j.surfcoat.2021.127155

 

ارتقاء امنیت وب با وف ایرانی