اثر فشار گاز و فاصله پاشش فرایند پاشش سرد بر خواص پوشش‌های فلز روی بر بستر فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش مهندسی مواد، دانشکده مهندسی معدن و مواد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

هدف از این پژوهش، بررسی اثر فشار گاز و فاصله پاشش فرایند پاشش سرد فلز روی بر بستر فولاد کم کربن است. به همین منظور، ابتدا پودر فلز روی در فشارهای 20 و 30 بار و فواصل پاشش 20 و 30 میلی‌متر پاشش شدند. ریزساختار پوشش‌های ایجادشده با میکروسکوپ‌های نوری و الکترونی روبشی بررسی و ریزسختی پوشش‌ها اندازه‌گیری شد. سپس، پوشش‌ منتخب و بستر فولادی تحت آزمون‌ خوردگی پلاریزاسیون تافل قرار گرفتند. نتایج نشان داد که افزایش فشار گاز از 20 به 30 بار باعث کاهش تخلخل و افزایش ریزسختی ناشی از تغییرشکل بیشتر می‌شود. همچنین در فشار ثابت، فاصله پاشش 20 میلی‌متر، کم‌ترین تخلخل و بیش‌ترین ریزسختی را به دلیل دمای بالاتر ذرات هنگام برخورد به بستر دارد. نتایج به‌دست آمده از آزمون پلاریزاسیون نشان می‌دهد که پوشش نسبت به بستر ماهیت فداشونده دارد و چگالی جریان خوردگی را 48% و نرخ خوردگی را 33% نسبت به بستر کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Gas Pressure and Stand-Off Distance on the Properties of Cold Sprayed Zinc on Steel Substrate

نویسندگان [English]

  • M.H. Khanbabaee Saatloo
  • َA. Abdollah-zadeh
  • R.A. Seraj
Department of Materials Engineering, Faculty of Mining and Materials Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

The aim of this research is to investigate the effect of gas pressure and stand-off distance of cold spray process of zinc on low carbon steel substrate. For this purpose, zinc powder was sprayed at pressures of 20 and 30 bar and stand-off distances of 20 and 30 mm. The microstructure of the coatings was investigated with optical and scanning electron microscope and the micro-hardness of the coatings was measured. Then, the selected coating and steel substrate were subjected to polarization corrosion test. The results showed that increasing the gas pressure from 20 to 30 bar decreases the porosity and increases the micro-hardness due to further deformation. Also, the stand-off distance of 20 mm has lowest porosity and the highest micro-hardness due to the higher temperature of the particles when impacts the substrate. The results obtained from the polarization test show that the coating has a sacrificial nature compared to the substrate and reduces the corrosion current density by 48% and corrosion rate of 33% compared to the substrate.

کلیدواژه‌ها [English]

  • Cold spray
  • Steel
  • Zinc
  • Porosity
  • Corrosion resistance
  1. Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods. J RSC Advances 2017;7(8):4580–610. doi:10.1039/c6ra25094g.
  2. Marder AR. The metallurgy of zinc-coated steel. J Progress in materials science 2000;45(3):191–271. doi:10.1016/S0079-6425(98)00006-1.
  3. Maledi NB, Oladijo OP, Botef I, Ntsoane TP, Madiseng A, Moloisane L. Influence of cold spray parameters on the microstructures and residual stress of Zn coatings sprayed on mild steel. J Surface and Coatings Technology 2017;318:106–13. doi:10.1016/j.surfcoat.2017.03.062.
  4. Vinay G, Chavan NM, Kumar S, Jyothirmayi A, Bodapati BR. Improved microstructure and properties of cold sprayed zinc coatings in the as sprayed condition. J Surface and Coatings Technology 2022;438(March):128392. doi:10.1016/j.surfcoat.2022.128392.
  5. Tafreshi M, Allahkaram SR, Farhangi H. Comparative study on structure, corrosion properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings. J Materials Chemistry and Physics 2016;183:263–72. doi:10.1016/j.matchemphys.2016.08.026.
  6. Lapushkina E, Yuan S, Mary N, Adrien J, Ogawa K, Normand B. Contribution in optimization of Zn Cold-sprayed coating dedicated to corrosion applications. J Surface and Coatings Technology 2020;400(July):126193. doi:10.1016/j.surfcoat.2020.126193.
  7. Güleç A, Cevher Ö, Türk A, Ustel F, Yılmaz F. Accelerated corrosion behaviors of Zn, Al and Zn/15Al coatings on a steel surface. J Materiali in Tehnologije 2011;45.5:477-482.
  8. Chavan NM, Kiran B, Jyothirmayi A, Phani PS, Sundararajan G. The corrosion behavior of cold sprayed zinc coatings on mild steel substrate. Journal of Thermal Spray Technology 2013;22(4):463–70. doi: 10.1007/s11666-013-9893-z.
  9. Assadi H, Kreye H, Gärtner F, Klassen T. Cold spraying – A materials perspective. J Acta Materialia 2016;116:382–407. doi:10.1016/j.actamat.2016.06.034.
  10. Goyal T, Walia RS, Sidhu TS. Effect of parameters on coating density for cold spray process. J Materials and Manufacturing Processes 2012;27(2):193–200. doi:10.1080/10426914.2011.566906.
  11. Srikanth A, Basha GMT, Venkateshwarlu B. A brief review on cold spray coating process. J Materials Today: Proceedings 2020;22:1390–7. doi:10.1016/j.matpr.2020.01.482.
  12. Rokni MR, Nutt SR, Widener CA, Champagne VK, Hrabe RH. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. Journal of thermal spray technology 2017;26:1308–55. doi:10.1007/s11666-017-0575-0.
  13. Singh H, Sidhu TS, Kalsi SBS. Cold spray technology: Future of coating deposition processes. J Frattura ed Integrita Strutturale 2012;22:69–84. doi:10.3221/IGF-ESIS.22.08.
  14. Assadi H, Gärtner F, Stoltenhoff T, Kreye H. Bonding mechanism in cold gas spraying. J Acta Materialia 2003;51(15):4379–94. doi:10.1016/S1359-6454(03)00274-X.
  15. Champagne VK, Helfritch DJ, Trexler MD, Gabriel BM. The effect of cold spray impact velocity on deposit hardness. J Modelling and Simulation in Materials Science and Engineering 2010;18(6). doi:10.1088/0965-0393/18/6/065011.
  16. Champagne V, Helfritch D. The unique abilities of cold spray deposition. J International Materials Reviews 2016;61(7):437–55. doi:10.1080/09506608.2016.1194948.
  17. Schmidt T, Gärtner F, Assadi H, Kreye H. Development of a generalized parameter window for cold spray deposition. J Acta Materialia 2006;54(3):729–42. doi:10.1016/j.actamat.2005.10.005.
  18. Sharma MM, Eden TJ, Golesich BT. Effect of surface preparation on the microstructure, adhesion, and tensile properties of cold-sprayed aluminum coatings on AA2024 substrates. Journal of Thermal Spray Technology 2015;24:410–22. doi:10.1007/s11666-014-0175-1.
  19. Li CJ, Li WY, Wang YY. Formation of metastable phases in cold-sprayed soft metallic deposit. J Surface and Coatings Technology 2005;198(1-3 SPEC. ISS.):469–73. doi:10.1016/j.surfcoat.2004.10.063.
  20. Legoux JG, Irissou E, Moreau C. Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. Journal of Thermal Spray Technology 2007;16(5–6):619–26. doi:10.1007/s11666-007-9091-y.
  21. Li WY, Li CJ, Yang GJ. Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating. J Applied Surface Science 2010;257(5):1516–23. doi:10.1016/j.apsusc.2010.08.089.
  22. Xie C, Li H, Zhou X, Sun C. Corrosion behavior of cold sprayed pure zinc coating on magnesium. J Surface and Coatings Technology 2019;374:797–806. doi:10.1016/j.surfcoat.2019.06.068.
  23. Hussain T, McCartney DG, Shipway PH, Zhang D. Bonding mechanisms in cold spraying: The contributions of metallurgical and mechanical components. Vol. 18, Journal of Thermal Spray Technology. 2009. p. 364–79. doi:10.1007/s11666-009-9298-1.
  24. Seraj RA, Abdollah-zadeh A, Dosta S, Assadi H, Cano IG. Comparison of Stellite coatings on low carbon steel produced by CGS and HVOF spraying. J Surface and Coatings Technology 2019;372:299–311. doi:10.1016/j.surfcoat.2019.05.022.
  25. Sudharshan Phani P, Srinivasa Rao D, Joshi S V., Sundararajan G. Effect of process parameters and heat treatments on properties of cold sprayed copper coatings. Vol. 16, Journal of Thermal Spray Technology. 2007. p. 425–34. doi:10.1007/s11666-007-9048-1.
  26. Henao J, Concustell A, Cano IG, Cinca N, Dosta S, Guilemany JM. Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings. Journal of Alloys and Compounds 2015;622:995–9. doi:10.1016/j.jallcom.2014.11.037.
  27. Chafjiri ZS, Abdollah-zadeh A, Seraj RA, Azarniya A. Effect of cold spray processing parameters on the microstructure, wear, and corrosion behavior of Cu and Cu–Al2O3 coatings deposited on AZ31 alloy substrate. J Results in Engineering 2023;20:101594. doi:10.1016/j.rineng.2023.101594.
  28. Adachi S, Ueda N. Effect of cold-spray conditions using a nitrogen propellant gas on AISI 316L stainless steel-coating microstructures. J Coatings 2017;7(7):87. doi:10.3390/coatings7070087.
  29. Zahiri SH, Fraser D, Gulizia S, Jahedi M. Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper. Vol. 15, Journal of Thermal Spray Technology. 2006. p. 422–30. doi:10.1361/105996306X124437.
  30. Chun DM, Choi JO, Lee CS, Ahn SH. Effect of stand-off distance for cold gas spraying of fine ceramic particles (< 5 μm) under low vacuum and room temperature using nano-particle deposition system (NPDS). J Surface and Coatings Technology 2012;206(8–9):2125–32. doi:10.1016/j.surfcoat.2011.09.043.
  31. Li WY, Zhang C, Guo XP, Zhang G, Liao HL, Li CJ, et al. Effect of standoff distance on coating deposition characteristics in cold spraying. J Materials & design 2008;29(2):297–304. doi:10.1016/j.matdes.2007.02.005.
  32. Dai S, Cui M, Li J, Zhang M. Cold Spray Technology and Its Application in the Manufacturing of Metal Matrix Composite Materials with Carbon-Based Reinforcements. J Coatings 2024;14(7):822. doi:10.3390/coatings14070822.
  33. Tang J, Saha GC, Richter P, Kondás J, Colella A, Matteazzi P. Effects of Post-spray Heat Treatment on Hardness and Wear Properties of Ti-WC High-Pressure Cold Spray Coatings. Journal of Thermal Spray Technology 2018;27(7):1153–64. doi:10.1007/s11666-018-0762-7.
  34. Marzbanrad B, Toyserkani E, Jahed H. Characterization of single- and multilayer cold-spray coating of Zn on AZ31B. J Surface and Coatings Technology 2021;416:127155. doi:10.1016/j.surfcoat.2021.127155.

 

 

 

 

ارتقاء امنیت وب با وف ایرانی