تأثیر اتمسفر بر خواص ساختاری و مکانیکی پوشش تیتانیم‌نیترید لایه نشانی‌شده روی آلیاژ حافظه‌دار نیکل-تیتانیم به روش پلاسمای فوکوس از نوع مدر

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

مقدمه و اهداف: آلیاژهای نیکل-تیتانیم سختی و خواص تریبولوژیکی ضعیفی دارند. در به‌کارگیری این آلیاژها برای کاربردهای پزشکی نظیر اتصالات مصنوعی مفصل استخوان‌ها، احتمال شل شدن ناشی از سایش وجود دارد. با ایجاد پوشش‌هایی نظیر تیتانیم نیترید می‌توان سختی، مقاومت سایشی و خوردگی سطوح را افزایش داد. تمرکز اصلی پژوهش بر این است که چگونه اتمسفر پوشش‌دهی می‌تواند نه تنها بر خواص مورفولوژیکی و ریزساختاری بلکه بر رفتار خورگی و مکانیکی پوشش‌ها تأثیر بگذارد. 
مواد و روش‌ها: این مطالعه، استفاده مؤثر از روش پلاسمای فوکوس چگال را برای رسوب پوشش‌های نیترید تیتانیم بر روی آلیاژهای حافظه‌دار در اتمسفرهای مختلف را نشان می‌دهد. اتمسفرهای مورد استفاده: (1) 50 درصد حجمی آرگون، 50 درصد حجمی نیتروژن و (2) 75 درصد حجمی آرگون، 25 درصد حجمی نیتروژن بودند. 
یافته‌ها: عملیات نیتروراسیون در شرایط ذکرشده، باعث افزایش سختی نمونه‌ها شده است. سختی متوسط در نمونه‌های 0.5N2-7 و 0.25N2-7 به‌ترتیب نزدیک به HV 459 و HV 410/5 به‌دست آمد. در فاصله‌ ثابت آند از سطح نمونه، با کاهش نسبت نیتروژن به کل گاز ورودی، میزان کندوپاش در محفظه افزایش یافته و به افزایش ضخامت پوشش منجر می‌شود. ضخامت پوشش در نمونه‌های 0.5N2-7 و 0.25N2-7 به‌ترتیب
µm 0/91 و  µm 1/75 به‌دست آمد.  
نتیجه‌گیری: تصاویر میکروسکوپی الکترونی روبشی از سطح پوشش‌ها نشان داد که فرایند نیتروژن‌دهی در محیط 75 درصد حجمی آرگون، 25 درصد حجمی نیتروژن، روش مؤثرتری برای جلوگیری از ترک خوردن سطح است. علاوه بر این، در این اتمسفر با کاهش نسبت نیتروژن به کل گاز ورودی، به افزایش ضخامت پوشش و بهبود رفتار خوردگی منجر شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Atmospheric Influence on the Structural and Mechanical Properties of TiN Coating Deposited on NiTi Shape Memory Alloy via Mather-Type Dense Plasma Focus

نویسندگان [English]

  • Mahdiyeh Soltanalipour
  • Jafar Khalil-Allafi
Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P. O. Box, 51335-1996, Tabriz, Iran
چکیده [English]

Introduction and Objectives: Nickel-titanium alloys have poor hardness and tribological properties. There is a possibility of loosening caused by wear while using these alloys for medical applications such as artificial bone joints. The hardness, wear resistance, and corrosion resistance of the surfaces can be improved by deposition of coatings such as TiN. The study's main objective was to investigate how the deposition atmosphere affects the morphological and microstructural properties and the mechanical and corrosion behavior of the coatings.
Materials and Methods: This study demonstrates the effective use of the dense plasma focus method to deposit titanium nitride coatings onto nickel-titanium shape memory alloys in various atmospheric conditions. The atmospheres used were (i) 50 vol. % argon and 50 vol. % nitrogen, and (ii) 75 vol. % argon and 25 vol. % nitrogen.
Results: Nitriding process under the above-mentioned conditions increased the hardness of the samples. The average hardness of samples 0.5N2-7 and 0.25N2-7 were obtained to be ~ 459 HV and 410.5 HV, respectively. At a constant distance from the anode to the sample surface, with a decrease in the ratio of nitrogen to the total inlet gas, the sputtering rate in the chamber increases and leads to an increase in the coating thickness. The coating thickness of samples 0.5N2-7 and 0.25N2-7 were obtained to be 0.91 µm and 1.75 µm, respectively.
Conclusion: Scanning electron microscope images of the coating surfaces indicated that the nitriding process in the 75 vol. % argon and 25 vol. % nitrogen environment was more effective in preventing cracking. Additionally, lowering the nitrogen ratio in the atmosphere led to a higher sputtering rate within the chamber, contributing to an increase in coating thickness and improved corrosion resistance.

کلیدواژه‌ها [English]

  • Dense Plasma Focus
  • NiTi alloy
  • TiN coating
  • Structural properties
  • Corrosion behavior
  1. Jin S, Zhang Y, Wang Q, Zhang D, Zhang S. Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids Surf B Biointerfaces 2013;101:3439. http://dx.doi.org/10.1016/j.colsurfb.2012.06.029
  2. Otsuka and C. M. Wayman. Shape memory materials. first publ. United Kingdom: Cambridge University Press; 1999.
  3. Levintant N. Analysis of the mechanical and shape memory behaviour of nitrogen ion-implanted NiTi alloy. Vacuum. 2007;81(10):1283–7. https://doi.org/10.1016/j.vacuum.2007.01.058
  4. Yetim AF, Yildiz F, Vangolu Y, Alsaran A, Celik A. Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy. Wear. 2009;267(12):2179–85. https://doi.org/10.1016/j.wear.2009.04.005
  5. Jin N, Yang Y, Luo X, Xia Z. Development of CVD Ti-containing films. Prog Mater Sci. 2013;58(8): 1490–533.http://dx.doi.org/10.1016/j.pmatsci.2013.07.001
  6. Kucharski S, Levintant-Zayonts N, Luckner J. Mechanical response of nitrogen ion implanted NiTi shape memory alloy. Mater Des. 2014;56:671–9.
  7. Starosvetsky D, Gotman I. Corrosion behavior of titanium nitride coated ni-ti shape memory surgical alloy. Biomaterials. 2001;22(13):1853–9.
  8. Cheng Y, Zheng YF. Surface characterization and electrochemical studies of biomedical NiTi alloy coated with TiN by PIIID. Mater Sci Eng A. 2006; 438–440:1146–9.
  9. Kashaev N, Stock HR, Mayr P. Assessment of the application potential of the intensified glow discharge for industrial plasma nitriding of Ti-6Al-4V. Surf Coatings Technol. 2005;200(1-4 SPEC. ISS.):502–6.
  10. Hassan M, Qayyum A, Ahmad R, Rawat RS, Lee P, Hassan SM, et al. Dense plasma focus ion-based titanium nitride coating on titanium. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2009;267(11):1911–7. http://dx. doi.org/10.1016/j.nimb.2009.03.102
  11. Alexeeva OK, Fateev VN. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. Int J Hydrogen Energy. 2016;41(5):3373–86. http://dx.doi.org/10.1016/j.ijhydene.2015.12.147
  12. Firouzabadi SS, Naderi M, Dehghani K, Mahboubi F. Effect of nitrogen flow ratio on nano-mechanical properties of tantalum nitride thin film. J Alloys Compd. 2017; 719: 63–70. http://dx.doi.org/10.1016/j.jallcom.2017.05.159
  13. Ahmad M, Akel M, Al-Hawat S. Sn/Pb ratio variation in spherical structures deposited on silicon surface using plasma focus. Heliyon. 2023;9(6): e17098. https://doi.org/10.1016/j.heliyon.2023.e17098
  14. Faré S, Lecis N, Vedani M, Silipigni A, Favoino P. Properties of nitrided layers formed during plasma nitriding of commercially pure Ti and Ti-6Al-4V alloy. Surf Coatings Technol. 2012;206(8–9):2287–92. http://dx.doi.org/10.1016/j.surfcoat.2011.10.006
  15. Rodriguez GP, Herranz G, Romero A. Solar gas nitriding of Ti6Al4V alloy. Appl Surf Sci . 2013; 283: 445–52. http://dx.doi.org/10.1016/j.apsusc.2013.06.128
  16. Yilbas BS, Sahin AZ, Al-Garni AZ, Said SAM, Ahmed Z, Abdulaleem BJ, et al. Plasma nitriding of Ti-6Al-4V alloy to improve some tribological Surf Coatings Technol. 1996;80(3):287–92.
  17. Kyzioł K, Kaczmarek Ł, Brzezinka G, Kyzioł A. Structure, characterization and cytotoxicity study on plasma surface modified Ti-6Al-4V and γ-TiAl alloys. Chem Eng J. 2014;240:516–26.
  18. Rahman M, Hashmi MSJ. Saddle field fast atom beam source: A new low pressure plasma nitriding method for a alloy Ti-6Al-4V. Thin Solid Films. 2006;515(1):129–34.
  19. Man HC, Zhao NQ, Cui ZD. Surface morphology of a laser surface nitrided and etched Ti-6Al-4V alloy. Surf Coatings Technol. 2005;192(2–3):341–6.
  20. Şerban VA, Roşu RA, Bucur AI, Pascu DR. Deposition of titanium nitride layers by electric arc-reactive plasma spraying method. Appl Surf Sci. 2013;265:245–9.
  21. Weerasinghe VM, West DRF, De Damborenea J. Laser surface nitriding of titanium and a titanium alloy. J Mater Process Technol. 1996;58(1):79–86.
  22. Liu J, Lin M, Hsu M, Li U. Effect of nitriding surface treatment on the corrosion resistance of dental nickel–titanium files in 5. 25 % sodium hypochlorite solution. J Alloy Compd J. 2009;475:789–93.
  23. Cheng Y, Zheng YF. Surface characterization and mechanical property of TiN/Ti-coated NiTi alloy by Surf Coatings Technol. 2007;201(15):6869–73.
  24. Rahman M, Reid I, Duggan P, Dowling DP, Hughes G, Hashmi MSJ. Structural and tribological properties of the plasma nitrided Ti-alloy biomaterials: Influence of the treatment temperature. Surf Coatings Technol. 2007;201(9-11 SPEC. ISS.): 4865–72.
  25. Li H, Cui Z, Li Z, Zhu S, Yang X. Surface modification by gas nitriding for improving cavitation erosion resistance of CP-Ti. Appl Surf Sci. 2014;298:164–70. http://dx.doi.org/10.1016/j.apsusc.2014.01.152
  26. Maleki-Ghaleh H, Khalil-Allafi J, Sadeghpour-Motlagh M, Shakeri MS, Masoudfar S, Farrokhi A, et al. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy. J Mater Sci Mater Med. 2014;25(12):2605–17.
  27. Pérez P. Influence of nitriding on the oxidation behaviour of titanium alloys at 700 °C. Surf Coatings Technol. 2005;191(2–3):293–302.
  28. Vasylyev MA, Chenakin SP, Yatsenko LF. Nitridation of Ti-6Al-4V alloy under ultrasonic impact treatment in liquid nitrogen. Acta Mater. 2012;60(17):6223–33. http://dx.doi.org/10.1016/j.actamat.2012.08.006
  29. Mcmahon RE, Ma J, Verkhoturov S V, Munoz-pinto D, Karaman I, Rubitschek F, et al. A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys. Acta Biomater. 2012;8:2863–70.
  30. Zheng YF, Huang BM, Zhang JX, Zhao LC. The microstructure and linear superelasticity of cold-drawn TiNi alloy. Mater Sci Eng A. 2000;279(1–2): 25–35.
  31. Khalil-allafi J, Dlouhy A, Eggeler G. Ni 4 Ti 3 -precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 2002;50:4255–74.
  32. Abbasi-Chianeh V, Khalil-Allafi J. Influence of applying external stress during aging on martensitic transformation and the superelastic behavior of a Ni-rich NiTi alloy. Mater Sci Eng A . 2011;528 (15): 5060–5. http://dx.doi.org/10.1016/j.msea.2011.03.029
  33. Kazemi-Choobi K, Khalil-Allafi J, Abbasi-Chianeh V. Investigation of the recovery and recrystallization processes of Ni 50.9Ti 49.1 shape memory wires using in situ electrical resistance measurement. Mater Sci Eng A. 2012;551:122–7. http://dx.doi.org/10.1016/j.msea.2012.04.106
  34. Ghabchi A, Khalil-Allafi J, Liu XW, Söderberg O, Turunen E, Hannula S-P. Effect of aging and solution annealing on transformation and deformation mechanism of super-elastic Ni50.9%-Ti alloy in nano- scale. ESOMAT. 2009;02009.
  35. Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4(3):447–67.
  36. Cheng Y, Zheng YF. Effect of N 2 / Ar gas flow ratio on the deposition of TiN / Ti coatings on NiTi shape memory alloy by PIIID. Mater Lett. 2006;60:2243–7.
  37. Cheng H, Wen Y. Correlation between process parameters , microstructure and hardness of titanium nitride films by chemical vapor deposition. Surf Coat Technol. 2004;179(03):103–9.
  38. Wang J, Liu M. Study on the tribological properties of hard films deposited on biomedical NiTi alloy. Mater Chem Phys . 2011;129(1–2):40–5. http://dx.doi.org/10.1016/j.matchemphys.2011.03.051
  39. Yildiz F, Alsaran A. Multi-pass scratch test behavior of modified layer formed during plasma nitriding. Tribiology Int . 2010;43(8):1472–8. http://dx.doi.org/10.1016/j.triboint.2010.02.005
  40. Rajan ST, Das M, Arockiarajan A. In vitro biocompatibility and degradation assessment of tantalum oxide coated Mg alloy as biodegradable implants. J Alloys Compd. 2022;905(10):164272.
  41. Corona-Gomez J, Sandhi KK, Yang Q. Wear and corrosion behaviour of nanocrystalline TaN, ZrN, and TaZrN coatings deposited on biomedical grade CoCrMo alloy. J Mech Behav Biomed Mater. 2022; 130(January).
  42. Zheng CY, Nie FL, Zheng YF, Cheng Y, Wei SC, Valiev RZ. Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface. Appl Surf Sci. 2011;257(21):9086–93. http://dx.doi.org/10.1016/j.apsusc.2011.05.105
  43. Sathish S, Geetha M, Pandey ND, Richard C, Asokamani R. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater Sci Eng C . 2010;30(3):376–82. http://dx.doi.org/10.1016/j.msec.2009.12.004

 

 

 

تحت نظارت وف ایرانی