بررسی تأثیر دمای کلسینه‌شدن بر خواص نانوذرات فریت کبالت تولیدشده به روش سل-ژل خوداحتراقی در حضور عصاره آلبومین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

مقدمه و اهداف: نانوذرات فریت کبالت به علت خواص مطلوب و عملکرد ویژه‌ای که از خود نشان می‌دهند، مورد توجه بسیاری از محققین قرار گرفته‌اند. از این‌رو در سال‌های اخیر سعی شده تا عوامل مؤثر بر خواص این نانوذرات بهینه‌سازی شوند. بر این اساس هدف از پژوهش حاضر بررسی تأثیر دمای فرایند کلسینه‌کردن بر خواص ساختاری، ریزساختاری و مغناطیسی است. 
مواد و روش‌ها: به این منظور، نانوذرات فریت کبالت در حضور افزودنی طبیعی آلبومین با روش سل-ژل خوداحتراقی سنتز شدند و در ادامه در چهار دمای 700، 800، 900 و 1000 درجه سانتی‌گراد کلسینه شدند و مورد مشخصه‌یابی با آنالیز پراش پرتو ایکس، میکروسکوپ الکترونی روبشی نشر میدانی، طیف‌سنجی مادون قرمز تبدیل فوریه و آزمون مغناطش‌سنج نمونه نوسانی قرار گرفتند.
یافته‌ها: نتایج به‌دست آمده نشان داد که در دماهای پایین ناخالصی Co3O4 تشکیل شد و این در حالی است که با افزایش دمای فرایند کلسینه‌کردن به 900 درجه سانتی‌گراد، ساختار بلوری اسپینلی تک‌فازی با میانگین اندازه بلورک‌هایی در محدوده 21 تا nm 105 به‌دست می‌آید. علاوه بر این دمای کلسینه‌کردن بر شکل ظاهری نانوذرات تولیدشده بسیار مؤثر بوده است. همچنین طیف‌های به‌دست آمده به‌خوبی مؤید تشکیل پیوندهای فلز-اکسیژن بودند. نتایج همچنین نشان داد که با تغییر دمای کلسینه‌کردن مغناطش اشباع و نیروی پسماند به‌ترتیب در محدوده emu/g 25/26-45/14 و Oe 170-743/28 تغییر می‌کنند.
نتیجه‌گیری: نتایج بررسی‌های انجام شده نشان می‌دهد که بهینه‌سازی دمای فرایند کلسینه‌کردن در ارتقاء خواص نهایی بسیار مؤثر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Calcination Temperature on the Properties of Cobalt Ferrite Nanoparticles Synthesized by the Auto-Combustion Sol-Gel Method in the Presence of Albumin

نویسندگان [English]

  • Farnoush Aghaie
  • Shima Soltani-Nezhad
  • Saeed Hasani
Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Introduction and Objectives: Cobalt ferrite nanoparticles have garnered significant attention from researchers owing to their desirable properties and unique performance. Consequently, efforts have been made in recent years to optimize the parameters influencing the properties of the nanoparticles. Accordingly, the aim of the present study is to investigate the effect of calcination temperature on the structural, microstructural, and magnetic properties.
Materials and Methods: To this end, cobalt ferrite nanoparticles were synthesized with the self-combustion sol-gel method in the presence of the natural additive albumin, and were calcined at four temperatures of 700, 800, 900, and 1000 °C and characterized with X-ray diffraction analysis, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometer analysis.
Results: The obtained results showed that at lower temperatures, the Co3O4 as impurity was formed, whereas with increasing calcination temperature to 900 °C, a single-phase spinel crystal structure with an average crystallite size in the range of 21 to 105 nm was obtained. In addition, images revealed that the calcination temperature had a significant influence on the morphology of the synthesized nanoparticles. Furthermore, the spectra clearly confirmed the formation of metal-oxygen bonds. The results also revealed that with changing the calcination temperature, the saturation magnetization and coercivity varied in the ranges of 25.26-45.14 emu/g and 170-743.28 Oe, respectively.
Conclusion: The results show that the optimization of the calcination temperature is greatly effective in enhancing the final properties.

کلیدواژه‌ها [English]

  • Cobalt ferrite
  • Calcination process
  • Sol-gel
  • Rietveld refinement analysis
  • Albumin
  1. Dumitrescu AM, Samoila PM, Nica V, Doroftei F, Iordan AR, Palamaru MN. Study of the chelating/fuel agents influence on NiFe2O4 samples with potential catalytic properties. Powder Technol. 2013;243:9–17. http://dx.doi.org/10.1016/j.powtec.2013.03.033
  2. Jafarpour M, Rostami M, Khalkhali SMH, Nikmanesh H, Majles Ara MH. The effect of lanthanum substitution on the structural, magnetic, and dielectric properties of nanocrystalline Mn-Ni spinel ferrite for radio frequency (RF) applications. Phys Lett Sect A Gen At Solid State Phys. 2022;446: https://doi.org/10.1016/j.physleta.2022.128285
  3. Datt G, Sen Bishwas M, Manivel Raja M, Abhyankar AC. Observation of magnetic anomalies in one-step solvothermally synthesized nickel-cobalt ferrite nanoparticles. Nanoscale. 2016; 8(9): 5200–13. https://doi.org/10.1039/C5NR06791J
  4. Nikmanesh H, Kameli P, Asgarian SM, Karimi S, Moradi M, Kargar Z, et al. Positron annihilation lifetime, cation distribution and magnetic features of Ni1−xZnxFe2−xCoxO4 ferrite nanoparticles. RSC Adv. 2017;7(36):22320–8. https://doi.org/10.1039/C7RA01975K
  5. Comanescu C. Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. Chem. 2022;4(3):872–930. https://doi.org/10.3390/chemistry4030063
  6. Esmaeili A, Ghobadianpour S. Vancomycin loaded superparamagnetic MnFe2O4 nanoparticles coated with PEGylated chitosan to enhance antibacterial activity. Int J Pharm. 2016;501(1–2):326–30. http://dx.doi.org/10.1016/j.ijpharm.2016.02.013
  7. Esmaeili A, Alizadeh Hadad N. Preparation of ZnFe2O4-chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics. Ceram Int. 2015;41(6):7529–35. http://dx.doi.org/10.1016/j.ceramint.2015.02.075
  8. Aslibeiki B, Eskandarzadeh N, Jalili H, Ghotbi Varzaneh A, Kameli P, Orue I, et al. Magnetic hyperthermia properties of CoFe2O4 nanoparticles: Effect of polymer coating and interparticle interactions. Ceram Int. 2022;48(19):27995–8005. https://doi.org/10.1016/j.ceramint.2022.06.104
  9. Pereira LG, Lucas de Sousa e Silva R, Banerjee P, Franco A. Role of Gd3+ ions on the magnetic hyperthermic behavior of anisotropic CoFe2O4 Phys B Condens Matter. 2020;587:1–8. https://doi.org/10.1016/j.physb.2020.412140
  10. Mathew DS, Juang RS. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129(1–3):51–65. https://doi.org/10.1016/j.cej.2006.11.001
  11. Zhang R, Sun L, Wang Z, Hao W, Cao E, Zhang Y. Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater Res Bull. 2018;98:133–8. http://dx.doi.org/10.1016/j.materresbull. 2017.08.006
  12. Sumalatha M, Shravan kumar Reddy S, Reddy MS, Sripada S, Raja MM, Reddy CG, et al. Raman and in-field 57Fe Mössbauer study of cation distribution in Ga substituted cobalt ferrite (CoFe2-xGaxO4). J Alloys Compd. 2020;837:155478. https://doi.org/10. 1016/j.jallcom.2020.155478
  13. Soltani-Nezhad S, Hasani S, Mashreghi A. Synthesis and Characterization of Ca2+ and Gd3+ Doped Cobalt Ferrite Nanoparticles Coated with Chitosan and Polyethylene Glycol. J Adv Mater Eng. 2023;42:1–16. (In persian). https://doi.org/10.47176/jame.42.1.1014
  14. Chae KP, Kim WK, Lee JG, Lee YB. Magnetic Properties of Ti-Doped Ultrafine CoFe2O4 Powder Grown by the Sol Gel Method. Hyperfine Interact. 2001;136–137(1–2):65–72. https://doi.org/10.1023/ A:1015545106444
  15. Hunpratub S, Phokha S, Kidkhunthod P, Chanlek N, Chindaprasirt P. The effect of cation distribution on the magnetic properties of CoFe2O4 Results Phys. 2021;24:104112. https://doi.org/10. 1016/j.rinp.2021.104112
  16. Nikmanesh H, Jaberolansar E, Kameli P, Ghotbi Varzaneh A, Mehrabi M, Shamsodini M, et al. Structural features and temperature-dependent magnetic response of cobalt ferrite nanoparticle substituted with rare earth sm3+. J Magn Magn Mater. 2022;543: 168664. https://doi.org/10.1016/j.jmmm.2021.168664
  17. Horikoshi S, Serpone N. Introduction to Nanoparticles. In: Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. 2013. p. 1–24. https://doi.org/10.1002/9783527648112.ch1
  18. Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater. 2012;324(6):903–15. http://dx.doi.org/10.1016/j.jmmm.2011.10.017
  19. Jeyadevan B, Tohji K, Nakatsuka K, Narayanasamy A. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure. J Magn Magn Mater. 2000;217(1):99–105. https://doi.org/10.1016/S0304-8853(00)00108-6
  20. Karaagac O, Yildiz BB, Köçkar H. The Influence of Synthesis Parameters on One-Step Synthesized Superparamagnetic Cobalt Ferrite Nanoparticles with High Saturation Magnetization. J Magn Magn Mater. 2019;473:262–7. https://doi.org/10.1016/j.jmmm.2018.063
  21. Rui H, Xing R, Xu Z, Hou Y, Goo S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42. https://doi.org/10.1002/adma. 201000260
  22. Köseoǧlu Y, Alan F, Tan M, Yilgin R, Öztürk M. Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int. 2012;38(5):3625–34. https://doi.org/10.1016/j.ceramint.2012.01.001
  23. Gao RR, Zhang Y, Yu W, Xiong R, Shi J. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method. J Magn Magn Mater. 2012;324(16):2534–8. http://dx.doi.org/10.1016/j.jmmm.2012.03.035
  24. Huang HY, Chiu CW, Chen YC, Yeh JM. Comparison of microemulsion electrokinetic chromatography and micellar electrokinetic chromatography as methods for the analysis of ten benzophenones. Electrophoresis. 2005; 26(4–5):895–902. http://doi.org/10.1002/elps.200410117
  25. Shi M, Zuo R, Xu Y, Jiang Y, Yu G, Su H, et al. Preparation and characterization of CoFe2O4 powders and films via the sol-gel method. J Alloys Compd. 2012;512(1):165–70. http://dx.doi.org/10.1016/j.jallcom. 09.057
  26. Salunkhe AB, Khot VM, Phadatare MR, Pawar SH. Combustion synthesis of cobalt ferrite nanoparticles - Influence of fuel to oxidizer ratio. J Alloys Compd. 2012; 514:91–6. http://dx.doi.org/10.1016/j.jallcom.2011.10.094
  27. Safi R, Ghasemi A, Shoja-razavi R, Tavousi M. The role of pH on the particle size and magnetic consequence of cobalt ferrite. J Magn Magn Mater. 2015;396:288–94. http://dx.doi.org/10.1016/j.jmmm.2015.08.022
  28. Tomar D, Jeevanandam P. Synthesis of cobalt ferrite nanoparticles with different morphologies via thermal decomposition approach and studies on their magnetic properties. J Alloys Compd. 2020;843:155815. https://doi.org/10.1016/j.jallcom.2020.155815
  29. Ai L, Jiang J. Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr Appl Phys. 2010; 10(1):284–8. http://dx.doi.org/10.1016/j.cap.2009.06.007
  30. Caldeira LE, Guaglianoni WC, Venturini J, Arcaro S, Bergmann CP, Bragança SR. Sintering-dependent mechanical and magnetic properties of spinel cobalt ferrite (CoFe2O4) ceramics prepared via sol-gel synthesis. Ceram Int. 2020;46(2):2465–72. https://doi.org/10.1016/j.ceramint.2019.09.240
  31. Sharifianjazi F, Moradi M, Parvin N, Nemati A, Jafari Rad A, Sheysi N, et al. Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceram Int. 2020;46(11):18391–412. https://doi.org/10.1016/j.ceramint.2020.04.202
  32. Darvishi M, Hasani S, Mashreghi A, Taghi Rezvan M, Ziarati A. Application of the full factorial design to improving the properties of CoFe2O4 nanoparticles by simultaneously adding apple cider vinegar and agarose. Mater Sci Eng B. 2023;297:116754. https://doi.org/10.1016/j.mseb.2023.116754
  33. Ahmadi R, Siefoddini A, Hasany M, Hasani S. Cobalt ferrite nanoparticles synthesis by sol–gel auto-combustion method in the presence of agarose: a non-isothermal kinetic analysis. J Therm Anal Calorim. 2022;147(21):12217–30. https://doi.org/10.1007/s10973-022-11391-8
  34. Venturini J, Zampiva RYS, Arcaro S, Bergmann CP. Sol-gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: Influence of additives on their stoichiometry and magnetic properties. Ceram Int. 2018; 44(11):12381–8. http://dx.doi.org/10.1016/j.ceramint. 2018.04.026
  35. Erhardt CS, Caldeira LE, Venturini J, Bragança SR, Bergmann CP. Sucrose as a sol-gel synthesis additive for tuning spinel inversion and improving the magnetic properties of CoFe2O4 Ceram Int. 2020; 46(8):12759–66. https://doi.org/10.1016/j.ceramint. 2020.02.044
  36. Routray KL, Saha S, Behera D. Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices. Mater Chem Phys. 2019;224:29–35. https://doi.org/10.1016/j.matchemphys.2018.11.073
  37. Hashemi SM, Ataollahi Z, Hasani S, Seifoddini A. Synthesis of the cobalt ferrite magnetic nanoparticles by sol–gel auto-combustion method in the presence of egg white (albumin). J Sol-Gel Sci Technol. 2023;106(1): 23–36. https://link.springer.com/10.1007/s10971-023-06073-2
  38. Purnama B, Wijayanta AT, Suharyana. Effect of calcination temperature on structural and magnetic properties in cobalt ferrite nano particles. J King Saud Univ - Sci. 2019;31(4):956–60. https://doi.org/ 10.1016/j.jksus.2018.07.019
  39. Prabhakaran T, Mangalaraja RV, Denardin JC, Jiménez JA. The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 J Alloys Compd. 2017;716:171–83. https://linkinghub.elsevier.com/ retrieve/pii/S0925838817316316
  40. Hoghoghifard S, Moradi M. Influence of annealing temperature on structural, magnetic, and dielectric properties of NiFe2O4 nanorods synthesized by simple hydrothermal method. Ceram Int. 2022;48(12):17768–75. https://doi.org/10.1016/j.ceramint.2022.03.047
  41. Afshari M, Rouhani Isfahani AR, Hasani S, Davar F, Jahanbani Ardakani K. Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe2O4 magnetic nanoparticles. Int J Appl Ceram Technol. 2019;16(4):1612–21. https://doi.org/10.1111/ijac.13224
  42. Ataie A, Mali A. Characteristics of barium hexaferrite nanocrystalline powders prepared by a sol-gel combustion method using inorganic agent. J Electroceramics. 2008;21(1-4 SPEC. ISS.):357–60. https://doi.org/10.1007/s10832-007-9206-3
  43. Khabazzadeh F, Hasani S, Soltani-Nezhad S, Seifoddini A, Mashreghi A. Enhancing the properties of barium hexaferrite nanoparticles synthesized via the sol–gel method using apple cider vinegar. Mater Sci Eng B. 2024;308:117570. https://doi.org/10. 1016/j.mseb.2024.117570
  44. Srinivasa Rao K, Ranga Nayakulu S V., Chaitanya Varma M, Choudary GSVRK, Rao KH. Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. J Magn Magn Mater. 2018;451:602–8. https://doi.org/10.1016/j.jmmm.2017.11.069
  45. Senthil VP, Gajendiran J, Raj SG, Shanmugavel T, Ramesh Kumar G, Parthasaradhi Reddy C. Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures. Chem Phys Lett. 2018;695: 19–23. https://doi.org/10.1016/j.cplett.2018.01.057
  46. Wang Z, Fei W, Qian H, Jin M, Shen H, Jin M, et al. Structure and magnetic properties of CoFe2O4 ferrites synthesized by sol-gel and microwave calcination. J Sol-Gel Sci Technol. 2012;61(2):289–95. https://doi. org/10.1007/s10971-011-2626-1
  47. Shahedi S, Hasani S, Daneshfar Z, Mashreghi A, Zoghaghi Z. Investigating the Photocatalytic Behavior of Manganese-Zinc Ferrite and the Effect of Its Concentration on the Degradation of Methylene Blue in the Presence of Visible Light. J Adv Mater Eng. 2024;43:35–46. (In persian). https://doi.org/ 47176/jame.43.3.1072
  48. Verma KC, Goyal N, Singh M, Singh M, Kotnala RK. Hematite α-Fe2O3 induced magnetic and electrical behavior of NiFe2O4 and CoFe2O4 ferrite nanoparticles. Results Phys. 2019;13:102212. https://linkinghub.elsevier.com/retrieve/pii/S221137971833362X
  49. Hashemi SM, Hasani S, Jahanbani Ardakani K, Davar F. The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. J Magn Magn Mater. 2019;492:165714. https://doi.org/ 10.1016/j.jmmm.2019.165714
  50. Amirabadizadeh A, Salighe Z, Sarhaddi R, Lotfollahi Z. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties. J Magn Magn Mater. 2017;434:78–85. http://dx.doi. org/10.1016/j.jmmm.2017.03.023
  51. Xavier S, Jiji MK, Thankachan S, Mohammed EM. Effect of sintering temperature on the structural and electrical properties of cobalt ferrite nanoparticles. In: AIP Conference Proceedings. 2014. p. 98–101. https://pubs.aip.org/aip/acp/article/1576/1/98-101/830139
  52. Fernandes de Medeiros IA, Lopes-Moriyama AL, de Souza CP. Effect of synthesis parameters on the size of cobalt ferrite crystallite. Ceram Int. 2017;43(5): 3962–9. http://dx.doi.org/10.1016/j.ceramint.2016.10.105
  53. Maaz K, Mumtaz A, Hasanain SK, Ceylan A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater. 2007;308(2):289–95. https://doi.org/10.1016/j.jmmm.2006.06.003
  54. Shukla S, Seal S, Vij R, Bandyopadhyay S. Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Lett. 2003;3(3):397–401. https://doi.org/10.1021/nl0259380
  55. Soltani-Nezhad S, Mashreghi A, Hasani S, Rezvan MT, Ziarati A. Application of Taguchi method to optimize the properties of cobalt ferrite nanoparticles doped by Ca2+ and Gd3+. Inorg Chem Commun. 2024;159:111759. https://linkinghub.elsevier.com/retrieve/pii/S1387700323013710
  56. Tian X, Lian S, Wen J, Chen Z, Wang S, Hu J, et al. Egg albumin-assisted sol–gel synthesis and photo-catalytic activity of SnO2 micro/nano-structured biscuits. J Sol-Gel Sci Technol. 2018;85(2):402–12. http://dx.doi.org/10.1007/s10971-017-4547-0
  57. Vahur S, Teearu A, Peets P, Joosu L, Leito I. ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm–1. Anal Bioanal Chem. 2016;408(13):3373–9. http://dx.doi.org/10.1007/s00216-016-9411-5
  58. Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Kalina L, Urbánek P, et al. Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason Sonochem. 2018;40: 773–83. http://dx.doi.org/10.1016/j.ultsonch.2017.08.024
  59. Imanipour P, Hasani S, Seifoddini A, Farnia A, Karimabadi F, Jahanbani-Ardakani K, et al. The possibility of vanadium substitution on Co lattice sites in CoFe2O4 synthesized by sol–gel autocombustion method. J Sol-Gel Sci Technol. 2020;95(1):157–67. http://dx.doi.org/10.1007/s10971-020-05316-w
  60. Murugesan C, Chandrasekaran G. Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 2015; 5(90):73714–25. https://doi.org/10.1039/C5RA14351A
  61. Moslemi S, Mohebbi E, Hasani S. The effect of apple pectin agent on the structural, magnetic, and optical properties of cobalt ferrite nanoparticles synthesized by the auto-combustion sol-gel method. Mater Chem Phys. 2024;315:129015. https://doi.org/10.1038/s41598-022-07229-w
  62. Masti SA, Sharma AK, Vasambekar PN, Vaingankar AS. Influence of Cd2+ and Cr3+ substitutions on the magnetization and permeability of magnesium ferrites. J Magn Magn Mater. 2006;305(2):436–9. https://doi.org/10.1016/j.jmmm.2006.01.229
  63. Mohebbi E, Hasani S, Nouri-Khezrabad M, Ziarati A. The effect of agarose agent on the structural, magnetic and optical properties of barium hexaferrite nano-particles synthesized by sol-gel auto-combustion method. Ceram Int. 2023;49(6):9757–70. https://linkinghub.elsevier.com/retrieve/pii/S0272884222041724
  64. Chakrabarty S, Dutta A, Pal M. Effect of yttrium doping on structure, magnetic and electrical properties of nanocrystalline cobalt ferrite. J Magn Magn Mater. 2018; 461:69–75. https://doi.org/10.1016/j.jmmm.2018.04.051
  65. Soltani-Nezhad S, Mashreghi A, Hasani S, Daneshfar Z, Rezvan MT, Emami A. Optimization of the coating process in the PEGylated chitosan-based doped cobalt ferrite nanoparticles for hyperthermia applications using the Taguchi method. Mater Chem Phys. 2024;323: https://doi.org/10.1016/j.matchemphys.2024. 129625
  66. Basak M, Rahman L, Ahmed F, Biswas B, Sharmin N. Calcination effect on structural , morphological and magnetic properties of nano-sized CoFe2O4 developed by a simple co-precipitation technique. Mater Chem Phys. 2021;264:124442. https://doi.org/10.1016/j.matchemphys.2021.124442
  67. Sivagurunathan P, Gibin SR. Preparation and characterization of nanosized cobalt ferrite particles by co-precipitation method with citrate as chelating agent. J Mater Sci Mater Electron. 2016;27(9):8891–8. https://doi.org/10.1007/s10854-016-4915-5
  68. Shyamaldas, Bououdina M, Manoharan C. Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. J Magn Magn Mater. 2020;493:165703. https://doi.org/10.1016/j.jmmm.2019.165703

 

 

تحت نظارت وف ایرانی