بررسی تأثیر دمای بازپخت بر ریزساختار، سختی و فشار ترکیدن فولاد 34CrMo4

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان 84156-83111، ایران

چکیده

مقدمه و اهداف: فولاد 34CrMo4 به دلیل داشتن محتوای متوسط کربن، امکان افزایش مقاومت خود را از طریق عملیات حرارتی خنک‌کردن و بازپخت دارد. هدف از پژوهش حاضر به‌دست آوردن دمای بهینه بازپخت به‌منظور دست‌یابی به خواص بهینه ساختاری و مکانیکی از جمله سختی و فشار ترکیدن است.
مواد و روش‌ها: در پژوهش حاضر، فولاد 34CrMo4 به‌عنوان ماده اولیه مورداستفاده قرار گرفته است. پس از طی مراحل فرایند ساخت مخزن گاز طبیعی و انجام عملیات حرارتی، به‌منظور بررسی خواص ریزساختاری و مکانیکی مخازن تولیدشده، آزمون‌های سختی‌سنجی، بررسی فشار هیدرولیک، فشار ترکیدن و مطالعات ریزساختاری انجام شد. 
یافته‌ها: نتایج نشان داد که در محدوده دمای بازپخت 505 تا 585 درجه سانتی‌گراد، سختی از 392 تا 310 برینل کاهش یافت و فشار شکست از 620 تا 500 بار کاهش یافت. در مقایسه با استاندارد ملی (ISIRI 7598) نمونه‌های ساخته‌شده در دماهای 505، 525 و 545 درجه سانتی‌گراد، شرایط استاندارد را برآورده نمی‌کنند و دمای عملیات حرارتی بهینه در محدوده 565 تا 585 درجه سانتی‌گراد، برای مخازن گاز طبیعی فشرده است.
نتیجه‌گیری: با افزایش دمای بازپخت، استحکام ماده کاهش‌یافته و با اعمال فشار کمتری ترکیدن اتفاق افتاده است. با افزایش دمای بازپخت سطوح شکست از شکست ترد به سمت شبه‌ترد و شکست نرم پیش خواهد رفت. محدوده دمای بازپختی که خواص مکانیکی بهینه مطابق با استاندارد ملی 7598 حاصل خواهد شد، بین 565-585 درجه سانتی‌‌گراد خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Tempering Temperature on the Microstructure, Hardness and Burst Pressure of 34CrMo4 Steel

نویسندگان [English]

  • Ali Zareei
  • Mohammad Mahdi Piran
  • Masoud Atapoor
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

Introduction and Objectives: 34CrMo4 steel has the ability to increase its strength through quenching and annealing heat treatment due to its moderate carbon content. The aim of the present study is to obtain the optimal annealing temperature in order to achieve optimal structural and mechanical properties, including hardness and burst pressure.
Materials and Methods: In the present study, 34CrMo4 steel was used as the starting material. After going through the stages of the natural gas tank construction process and performing heat treatment, hardness testing, hydraulic pressure testing, burst pressure testing, and microstructural studies were performed to investigate the microstructural and mechanical properties of the produced tanks.
Results: The results showed that in the annealing temperature range of 505 to 585°C, the hardness decreased from 392 to 310 Brinell and the breaking pressure decreased from 620 to 500 bar. Compared to the national standard (ISIRI 7598), the samples made at temperatures of 505, 525, and 545°C do not meet the standard conditions and the optimum heat treatment temperature is in the range of 565 to 585°C for compressed natural gas tanks.
Conclusion: With increasing tempering temperature, the strength of the material decreases and bursting occurs with less pressure. With increasing annealing temperature, the fracture surfaces will progress from brittle fracture to quasi-brittle and ductile fracture. The annealing temperature range at which optimal mechanical properties will be achieved in accordance with the National Standard 7598 will be between 565-585°C.

کلیدواژه‌ها [English]

  • 34CrMo4 steel
  • Annealing temperature
  • Pressure vessel
  • Mechanical properties
  • Microstructure
  1. Wegst CW. Key to Steel. Stahlschluessel. 10th ed. Munich: Verlag Stahlschluessel; 2010.
  2. Conde A, De Damborenea JJ, López-Escobar JM, Perez-Arnaez C. Slow strain rate technique for studying hydrogen induced cracking in 34CrMo4 high strength steel. Int J Hydrogen Energy 2021;46(70):34970-82. https://doi.org/10.1016/j.ijhydene.2021.08.026
  3. Ball M, Wietschel M. The future of hydrogen–opportunities and challenges. Int J Hydrogen Energy 2009;34(2):615-27. https://doi.org/10.1016/j.ijhydene. 2008.11.014
  4. Barthélémy H, Weber M, Barbier F. Hydrogen storage: Recent improvements and industrial perspectives. Int J Hydrogen Energy 2017;42(11):7254-62. https://doi.org/10.1016/j.ijhydene.2016.03.178
  5. Li Y, Fang W, Lu C, Gao Z, Ma X, Jin W, Ye Y, Wang F. Microstructure and mechanical properties of 34CrMo4 steel for gas cylinders formed by hot drawing and flow forming. Mater. 2019;12(8):1351. https://doi.org/10.3390/ma12081351
  6. Tvrdý M, Havel S, Hyspecká L, Mazanec K. Hydrogen embrittlement of CrMo and CrMoV pressure vessel steels. Int J Press. 1981;9(5):355-65. https://doi.org/1016/0308-0161(81)90008-9
  7. Khan MI, Yasmin T, Shakoor A. International experience with compressed natural gas (CNG) as environmental friendly fuel. J Energy Syst. 2015;6(4):507-31. https://doi.org/1007/s12667-015-0152-x
  8. Semin S, Bakar RA, Ismail AR. Green engines development using compressed natural gas as an alternative fuel: a review. Am J Environ Sci. 9009;5(3): 371-381. https://doi.org/10.3844/ajessp.2009.371.381
  9. ISO/IEC 17025 accreditation [Internet]. EuroLab; [cited 2025 Mar 5]. Available from: https://www.eurolab.net/iso-17025-accreditation
  10. Li Y, Fang W, Lu C, Gao Z, Ma X, Jin W, Ye Y, Wang F. Microstructure and mechanical properties of 34CrMo4 steel for gas cylinders formed by hot drawing and flow forming. Mater. 2019 ;12(8):1351. https://doi.org/3390/ma12081351
  11. Scott DA, Schwab R, Scott DA, Schwab R. The Structure of Metals and Alloys. Metallogr Archaeol Art. 2019:69-132. https://doi.org/1007/978-3-030-11265-3_4
  12. SIJ Group [Internet]. SIJ Group; [cited 2025 Mar 5]. Available from: https://sij.si/en
  13. Nagakura S, Hirotsu Y, Kusunoki M, Suzuki T, Nakamura Y. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction. Metall Trans A. 1983;14: 1025-31. https://doi.org/10.1007/BF02670441
  14. Van Genderen MJ, Isac M, Böttger A, Mittemeijer EJ. Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite. Metall Trans A. 1997;28:545-61. https://doi.org/10.1007/s11661-997-0042-5
  15. Mittemeher EJ, Cheng L, Van der Schaaf PJ, Brakman CM, Korevaar BM. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Metall Trans A. 1988;19: 925-32. https://doi.org/10.1007/BF02628377
  16. Chen PC, Winchell PG. Martensite lattice changes during tempering. Metall Trans A. 1980;11:1333-9. https://doi.org/10.1007/BF02653487
  17. Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall Mater Trans B. 2001;32(2):205-21. https://doi.org/1007/s11663-001-0044-4
  18. Lee WS, Su TT. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. J Mater Process Technol. 1999 ;87(1-3):198-206. https://doi.org/1016/S0924-0136(98)00351-3
  19. Tavissorkani H. Principles of materials science and engineering. 4th ed. Isfahan: Isfahan University of Technology Press; 2016. p. 302-308. (In persian)
  20. Callister W, Shokouhfar A. Principles of materials science and engineering. 4th ed. Tehran: K. N. Toosi University of Technology Press; 2009. p. 502-504. (In persian)
  21. Wikimedia Commons [Internet]. Wikimedia Foundation; [cited 2025 Mar 5]. Available from: https://commons.wikimedia.org
  22. Liu F, Lin X, Song M, Yang H, Song K, Guo P, Huang W. Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel. J Alloys Compd. 2016;689:225-32. https://doi.org/1016/j.jallcom.2016.07.276
  23. Sarhadi M, Merkabati M, Mahdavi R. Investigating the effect of annealing temperature on the structure and mechanical properties of a microalloyed steel containing Cr, Mo, and V. In: 6th International Conference and Exhibition on Metallurgy and Materials Engineering; 2017 Nov 15-17; Tehran, Iran. Tehran: Iranian Metallurgy Society; 2017. p. 120-125. (In Persian)
  24. Salih AA, Omar MZ, Junaidi S, Sajuri Z. Effect of different heat treatment on the SS440C martensitic stainless steel. Aust J Basic Appl Sci.2011;5:867-71.
  25. Xu X, Lu C, Li Y, Ma X, Jin W. Fatigue crack growth characteristics of 34CrMo4 steel for gas cylinders by cold flow forming after hot drawing. Metals. 2021;11(1):133. https://doi.org/3390/met11010133
  26. Zhao XQ, Pan T, Wang QF, Su H, Yang CF, Yang QX. Effect of tempering temperature on microstrueture and mechanical properties of steel containing Ni of 9%. J Iron Steel Res Int. 2011;18(5):47-51. https://doi.org/1016/S1006-706X(11)60064-2
  27. Dudko V, Belyakov A, Kaibyshev R. Effect of tempering on mechanical properties and microstructure of a 9% Cr heat resistant steel. Mater Sci Forum. 2012;706:841-6. https://doi.org/10.1088/1757-899X/525/1/012049
  28. Jiang Y, Xie J, Xu Y, Qiao P, Lu Y, Gong J. Evolution of mechanical properties of ferrite and pearlite phases during spheroidization process and their relationship to the overall properties of low alloy steel. J Mater Res Technol. 2024;29:5437-46. https://doi.org/1016/j.jmrt.2024.02.210
  29. Pavlina EJ, Van Tyne CJ. Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform. 2008;17:888-93. https://doi.org/s11665-008-9225-5
  30. Kučera P, Mazancová E. 34CrMo4 steel resistance against the SSC after controlled cooling process. Mater Eng. 2014;21:61-7.
  31. Kangal S, Kartav O, Tanoğlu M, Aktaş E, Artem HS. Investigation of interlayer hybridization effect on burst pressure performance of composite overwrapped pressure vessels with load-sharing metallic liner. J Compos Mater. 2020;54(7):961-80. https://doi.org/10.1177/0021998319870588
  32. Hertzberg RW, Vinci RP, Hertzberg JL. Deformation and fracture mechanics of engineering materials. John Wiley & Sons; 2020.
  33. Dieter GE, Bacon D. Mechanical metallurgy. New York: McGraw-hill; 1976. https://doi.org/1002/ crat.2170230211

 

 

 

تحت نظارت وف ایرانی