بررسی اثر دمای تغییر‌شکل بر ریزساختار و خواص مکانیکی فولاد زنگ‌نزن AISI 304

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

مقدمه و اهداف: فولاد زنگ‌نزن آستینیتی AISI 304 به دلیل مقاومت عالی در برابر خوردگی و اکسیداسیون، کاربرد فراوانی در صنایع مختلف دارد. این در حالی است که وجود فاز مغناطیسی فریت  در این فولاد، می‌تواند به‌شدت خواص آن را تضعیف کند. ازاین‌رو، در این پژوهش سعی شده است تا با بهینه‌سازی دما و میزان کاهش سطح مقطع در فرایند تغییرشکل گرم، فاز فریت  باقیمانده حل شود.
مواد و روش‌ها: فولاد مورد نظر، در محدوده دمایی 1050 تا 1200 درجه سانتی‌گراد، تحت عملیات نورد گرم با دو درصد کاهش سطح مقطع 30 و 60 درصد قرار گرفت. سپس درصد فازهای موجود در نمونه‌ها و اندازه دانه‌ها اندازه‌گیری شد. همچنین سختی و رفتار کششی نمونه‌ها بررسی شد.
یافته‌ها: نتایج حاصل از آنالیز تصویر نشان داد که میزان فریت موجود در ساختار نمونه نورد گرم‌شده در دمای 1150 درجه سانتی‌گراد و با درصد کاهش سطح مقطع ۶۰ درصد، به کم‌ترین میزان خود یعنی 0/39 درصد رسیده است. درحالی‌که با کاهش دمای نورد و افزایش میزان کاهش سطح مقطع میانگین اندازه دانه‌ها کوچک‌تر و درنتیجه میزان سختی نمونه‌ها افزایش یافت؛ بنابراین، انجام عملیات نورد گرم در دمای 1050 درجه سانتی‌گراد با کاهش سطح مقطع 60%، اندازه دانه‌ به کمترین مقدار( µm 54/73) کاهش یافت. همچنین نتایج آزمون کشش نیز نشان داد که این نمونه بیشترین میزان تنش تسلیم برابر با MPa 345 و استحکام نهایی برابر با MPa 653 را دارد.
نتیجه‌گیری: نتایج نشان داد که بهترین شرایط حذف فریت نورد دردمای 1150 درجه سانتی‌گراد و با درصد کاهش سطح مقطع ۶۰ درصد بوده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Deformation Temperature on the Structure and Mechanical Properties of AISI 304 Stainless Steel

نویسندگان [English]

  • Sara Eskandarinezhad
  • Alireza Mashreghi
  • Saeed Hasani
Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Introduction and targets: AISI 304 austenitic stainless steel is widely recognized for its excellent corrosion resistance and mechanical properties, making it suitable for various industrial applications. However, the presence of non-equilibrium δ-ferrite phase can significantly compromise these properties. This study aims to optimize the hot deformation process to dissolve the residual δ-ferrite in AISI 304 stainless steel by adjusting the deformation temperature and the degree of reduction.
Materials and methods: The sheet was hot rolled at temperatures ranging from 1050 °C to 1150 °C. Hot rolling was performed with reductions in cross-sectional area of 30% and 60%. Phase percentage and grain size were analyzed using image analysis software, and the hardness and tensile properties of the hot-rolled samples were examined.
Results: Results of image analysis showed that the amount of ferrite in the rolled sample heated at 1150 °C and with a percentage reduction area of 60% reached its lowest level, namely 0.39%. Additionally, with decreasing rolling temperature and increasing the reduction of area, the average grain size became smaller and, as a result, the hardness of the samples increased. As a result, performing hot rolling at a temperature of 1150 °C with a 60% reduction of area led to decrease the grain size to the lowest value of 54.73 µm. The tensile test results also revealed that this sample had the highest yield stress of 345 MPa and the ultimate tensile strength of 653 MPa.
Conclusion: The results declared that the best conditions for ferrite removal were rolling at a temperature of 1150 °C with a percentage of cross-sectional area reduction of 60%.

کلیدواژه‌ها [English]

  • Austenitic stainless steel
  • AISI 304
  • Hot deformation
  • Delta ferrite (δ)
  • Mechanical properties
  1. Yao S, Zhang H, Ma F, Liu P, Song L, Li W, et al. Effects of various grain boundary engineering processing on microstructure and corrosion behaviors of 304 stainless steel analyzed with a fractal model. J Mater Res Technol. 2023;25:13–24. https://doi.org/10.1016/j.jmrt.2023.05.175
  2. Eguchi K. Quantitative analysis of initiation site of pitting corrosion on type 304 austenitic stainless steel. Corros Sci. 2023;221:111312. https://doi.org/10.1016/j.corsci.2023.111312
  3. Sun YT, Kong X, Wang ZB. Superior mechanical properties and deformation mechanisms of a 304 stainless steel plate with gradient nanostructure. Int J Plast. 2022;155:103336. https://doi.org/10.1016/j.ijplas.2022.103336
  4. Kumar A, Sharma R, Kumar S, Verma P. A review on machining performance of AISI 304 steel. Mater Today Proc. 2022;56:2945–51. https://doi.org/10.1016/j.matpr.2021.11.003
  5. Naghizadeh M, Sohrabi MJ, and Mirzadeh H. Ultrafine grained Fe-Cr-Ni austenitic stainless steels by cold rolling and reversion annealing: A review of progress in Iran. Ultrafine Grained Nanostructured Mater. 2020;53(2):210–23. https://doi.org/10.22059/jufgnsm.2020.02.13
  6. Pugh JW, Nisbet JD. A study of the iron-chromium-nickel ternary system. JOM. 1950;2(2):268–76. https://doi.org/10.1007/BF03399000
  7. Tseng CC, Shen Y, Thompson SW, Mataya MC, Krauss G. Fracture and the formation of sigma phase, M23C6, and austenite from delta-ferrite in an AlSl 304L stainless steel. Metall Mater Trans A. 1994;25 (6):1147–58. https://doi.org/10.1007/BF02652290
  8. Rezayat M, Mirzadeh H, Namdar M, Parsa MH. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels. Metall Mater Trans A. 2016;47(2):641–8. https://doi.org/10.1007/s11661-015-3242-4
  9. Hsieh CC, Lin DY, Wu W. Dispersion strengthening behavior of σ phase in 304 modified stainless steels during 1073 K hot rolling. Met Mater Int. 2007; 13(5):359–63. https://doi.org/10.1007/BF03027868
  10. Venugopal S, Mannan SL, Prasad Y. Influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304 during hot working. Mater Lett. 1996;26(3):161–5. https://doi.org/10.1016/0167-577X(95)00215-4
  11. Han J, Wang Z, Jiang L. Properties of a 304 Austenitic Stainless Steel Hot Strip by TMCP. J Iron Steel Res Int. 2007;14(5):282–7.
  12. Campbell GT, Abrahamson EP, Grant NJ. The Recrystallization Behavior of an Austenitic Stainless Steel Ingot Structure Due to Hot Deformation. Metall Trans. 1974;5(8):1875–81. https://doi.org/10.1007/BF02644154
  13. Bywater KA, Gladman T. Influence of composition and microstructure on hot workability of austenitic stainless steels. Met Technol. 1976;3(1):358–65. https://doi.org/10.1179/030716976803392169
  14. Niikura M, Takahashi K, Ouchi C. Microstructural change of austenite in hot working with a very high reduction. Trans Iron Steel Inst Japan 1987;27(6):485–91. https://doi.org/10.2355/isijinternational1966.27.485
  15. Asghari Rad P, Nili Ahmadabadi M, Shirazi H. Microstructural evolution of semi-solid AISI 304 stainless steel after severe plastic deformation. Metall Eng. 2016;19:94–108. https://doi.org/10.22076/me.2017.46691.1086
  16. Kokawa H, Kuwana T, Yamamoto A. Crystallographic characteristics of delta-ferrite transformations in a 304L weld metal at elevated temperatures. Weld J. 1989;68(3).
  17. Saied M. Experimental and numerical modeling of the dissolution of delta ferrite in the Fe-Cr-Ni system: application to the austenitic stainless steels. Université Grenoble Alpes (ComUE); 2016.
  18. Ghaderi S, Karimzadeh F, Ashrafi A, Hosseini SH. Effect of pressure, temperature and homogenization on the dissolution behavior and mechanical properties of IN718/AISI 304 during transient liquid phase bonding. J Manuf Process. 2020;60:213–26. https://doi.org/10.1016/j.jmapro.2020.10.047
  19. Jia J, Liu Z, Cheng X, Du C, Li X. Development and optimization of Ni-advanced weathering steel: A review. Corros Commun. 2021;2:82–90. https://doi.org/10.1016/j.corcom.2021.09.003
  20. Soleymani S, Ojo OA, Richards N. Effect of Composition on the Formation of Delta Ferrite in 304L Austenitic Stainless Steels During Hot Deformation. J Mater Eng Perform. 2015;24(1):499–504. https://doi.org/10.1007/s11665-014-1290-3
  21. Fu JW, Yang YS, Guo JJ. Formation of a blocky ferrite in Fe–Cr–Ni alloy during directional solidification. J Cryst Growth. 2009;311(14):3661–6. https://doi.org/10.1016/j.jcrysgro.2009.05.007
  22. Xu D, Wan X, Yu J, Xu G, Li G. Effect of Cold Deformation on Microstructures and Mechanical Properties of Austenitic Stainless Steel. Metals (Basel) 2018;8(7):522. https://doi.org/10.3390/met8070522
  23. Plaut RL, Herrera C, Escriba DM, Rios PR, Padilha AF. A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res. 2007;10(4):453–60. https://doi.org/10.1590/S1516-14392007000400021
  24. Kim SH, Moon HK, Kang T, Lee CS. Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process. Mater Sci Eng A. 2003;356(1–2):390–8. https://doi.org/10.1016/S0921-5093(03)00152-7
  25. Mitchell BS. An introduction to materials engineering and science for chemical and materials engineers. John Wiley & Sons; 2004. https://doi.org/10.1002/0471473359
  26. Mataya MC, Brown EL, Riendeau MP. Effect of hot working on structure and strength of type 304L austenitic stainless steel. Metall Trans A. 1990;21(7): 1969–87. https://doi.org/10.1007/BF02647245
  27. Haidemenopoulos GN. Physical Metallurgy. CRC Press; 2018.
  28. Huda Z. Metallurgy for Physicists and Engineers. CRC Press; 2020.

 

 

 

تحت نظارت وف ایرانی