اندازه‌گیری ضریب انباشت دز پرتوهای گامای چشمه سزیم در ژل پلیمر حاوی نانوذرات نقره در غلظت‌های مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فیزیک و مهندسی هسته ای، دانشگاه صنعتی شاهرود، شاهرود، کد پستی: 95161-36199، سمنان، ایران

چکیده

مقدمه و اهداف: امروزه استفاده از پرتوهای یونیزان جهت درمان تومورهای سرطانی به‌طور مداوم در حال پیچیده‌ترشدن و دگرگون‌شدن هستند. در این تحقیق، اثر نانوذرات نقره در کمیت ضریب انباشت دز در ژل پلیمر PAGAS، به‌عنوان یک ماده نگهدارنده نانوذرات نقره، به‌منظور بررسی تاثیر نانوذرات نقره در پرتودرمانی و ساخت حفاظ مناسب (سبک، غیرسمی و انعطاف‌پذیر)، موردمطالعه قرار گرفته است. 
مواد و روش‌ها: منبع تولید پرتو گاما چشمه سزیم است. نانوذرات نقره به صورت محلول و با غلظت ppm 1000 است. ضریب انباشت دز توسط آشکارساز NaI(TL) اندازه‌گیری می‌شود. 
یافته‌ها: برای بررسی اثر نانوذرات نقره بر ضریب انباشت دز، از نانوذرات نقره از غلظت صفر تا هشت میلی‌مولار در دو نمونه از ژل پلیمر که یکی در ارتفاع یک سانتی‌متر و دیگری در ارتفاع  سه سانتی‌متر قرار دارد، استفاده شده است. از غلظت صفر تا دو میلی‌مولار نانوذرات نقره، ضریب انباشت دز روند افزایشی دارد؛ به‌طوری که در نمونه‌هایی با ارتفاع یک و سه سانتی‌متر، به ترتیب به بیشینه مقدار 1/092 و 1/119 می‌رسد و از غلظت دو تا هشت میلی‌مولار نانوذرات نقره، ضریب انباشت دز روند کاهشی دارد؛ به‌طوری که در نمونه‌هایی با ارتفاع یک و سه سانتی‌متر، به ترتیب به کمینه مقدار 1/010 و 1/091 می‌رسیم.  
نتیجه‌گیری: حضور نانوذرات نقره در ژل پلیمر، باعث افزایش برهمکنش پرتوها می‌شود که این افزایش برهمکنش پرتوها، در بافت سرطانی منجر به تخریب بیشتر بافت سرطانی شده و در حفاظ باعث تضعیف بیشتر پرتوها می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Measurement of the Dose Buildup Factor of Cesium Source Gamma Rays in Polymer Gel Containing Silver Nanoparticles in Different Concentrations

نویسندگان [English]

  • Ammar Vahedian Movahed
  • Hossein Tavakoli-Anbaran
Faculty of Physics and Nuclear Engineering, Shahrood University of Technology, Shahrood 36199-95161, Semnan, Iran
چکیده [English]

Introduction and Objectives: Nowadays, the use of ionizing radiation for the treatment of cancerous tumors is becoming increasingly sophisticated and evolving. In this study, the effect of silver nanoparticles on the dose buildup factor in PAGAS polymer gel—as a medium for holding silver nanoparticles—was investigated to evaluate their impact on radiotherapy and to develop suitable shielding materials that are lightweight, non-toxic, and flexible.
Materials and Methods: The gamma ray source is a cesium source. Silver nanoparticles are in solution at a concentration of 1000 ppm. The dose buildup factor is measured by a NaI(TL) detector.
Results: To investigate the effect of silver nanoparticles on the dose buildup factor, silver nanoparticles from a concentration of 0 to 8 mM were used in two samples of polymer gel, one at a height of 1 cm and the other at a height of 3 cm. From a concentration of 0 to 2 mM of silver nanoparticles, the dose buildup factor has an increasing trend, reaching a maximum value of 1.092 and 1.119 in samples with a height of 1 and 3 cm, respectively, and from a concentration of 2 to 8 mM of silver nanoparticles, the dose buildup factor has a decreasing trend. reaching a minimum value of 1.010 and 1.091 In samples with a height of 1 and 3 cm, respectively.
Conclusion: The presence of silver nanoparticles in the polymer gel increases the interaction of the rays, which in cancerous tissue leads to further destruction of the cancerous tissue and in the shield causes further attenuation of the rays.

کلیدواژه‌ها [English]

  • Buildup factor
  • Radiotherapy
  • Gamma ray
  • Cesium source
  • Protection
  • Polymer gel
  • Silver nanoparticles
  1. Hasani H, Nedayi H, Zahmatkesh M, Vardi M, Bagheri S, Mirzaei S. Dosimetric Evaluation of Linac Photon Small Fields using MAGIC Polymer Gels. Iran J Med Phys. 2011;8(3):31-39 (In Persian). https://doi.org/10.22038/ijmp.2011.7227
  2. Magugliani G, Marranconi M, Liosi GM, Locatelli F, Gambirasio A, Trombetta L, et al. Pilot scale validation campaign of gel dosimetry for pre-treatment quality assurance in stereotactic radiotherapy. Physica Medica. 2023;114:103158. https://doi.org/10.1016/j.ejmp.2023.103158
  3. Guadarrama-Huerta PJ, Arzaga-Barajas E, Rodríguez-Laguna A, Jim´enez-Acosta JA, Poitevin-Chac´on MA, Massillon-Jl G. Patient-specific quality assurance in SBRT treatments using 3D polymer gel dosimetry. Radiat Meas. 2024;175:107166. https://doi.org/10.1016/j.radmeas.2024.107166
  4. Javaheri N, Yarahmadi M, Refaei A, Aghamohammadi A. Improvement of sensitivity of X-ray CT reading method for polymer gel in radiation therapy. Rep Pract Oncol Radiother. 2020;25:100-103. https://doi.org/10.1016/j.rpor.2019.12.017
  5. Rabaeh KA, Hammoudeh IME, Eyadeh MM. Novel polymer gel dosimeters based on N-Vinylcaprolactam for medical dosimetry. J Radioanal Nucl Chem. 2022; 331:3147-3153. https://doi.org/10.1007/s 10967-022-08361-7
  6. Eyadeh MM, Samadi SA, Rabaeh KA, Oglat AA, Diamond KR. Effect of lithium chloride inorganic salt on the performance of  N‑(Hydroxymethyl)acrylamide polymer‑gel dosimeter in radiation therapy. J Radioanal Nucl Chem. 2021;330: 1255-1261. https://doi.org/10.1007/s10967-021-08036-9
  7. Kawamura H, Sakae T, Terunuma T, Ishida M, Shibata Y, Matsumura A. Evaluation of three-dimensional polymer gel dosimetry using X-ray CT and R2 MRI. Appl Radiat Isot. 2013;77:94–102. https://doi.org/10.1016/j.apradiso.2013.02.011
  8. Kozicki M, Jaszczak-Kuligowska M, Maras P. Measurement of ionising radiation dose absorbed by bones by using a bone-imitating polymer gel dosimeter. Meas. 2025;240:115633. https://doi.org/10.1016/j.measurement.2024.115633
  9. Zhanga T, Almajidi YQ, Awad SA, Rahi Alhachamid F, Abdulfadhil Gateae M, Kadhum WR. Dosimetric properties of PASSAG polymer gel dosimeter in electron beam radiotherapy using magnetic resonance imaging. J Xray Sci Technol. 2023;31:825-836. https://doi.org/10.3233/XST-230073
  10. Eyadeh MM, Alshomali L, Rabaeh KA, Oglat AA, Diamond KR. Improvement on the performance N‑(3‑methoxypropyl)acrylamide polymer‑gel dosimeter by the addition of inorganic salt for application in radiotherapy dosimetry. J Radioanal Nucl Chem. 2022;331:1343-1351. https://doi.org/10.1007/s10967-022-08197-1
  11. Khosravi H, Bouraghi H. Evaluation of gold nanoparticles radio sensitization effect in radiation therapy of cancer: review article. Tehran Univ Med J (TUMJ). 2019;76(12):772-777 (In Persian).
  12. Dezhangah M, Ghojavand M, Poursalehi R, Qolipour payvandi R. Study gamma radiation protection properties of silicon rubber-bismuth oxide nanocomposites: Synthesis, characterization and simulation. J Radiat Saf Meas. 2016;4(4):37-46 (In Persian). https://doi.org/ 10.22052/4.4.37
  13. Ornov D, emnick  J, Sp v ek V, Kon ek O. Polymer gel dosimetry using computed tomography. Nucl Instrum Methods Phys Res A or NIM A. 2011;652:806-809. https://doi.org/10.1016/j.nima.2010.09.089
  14. Mather LM. Application of ultrasound to polymer gel dosimeters used in radiotherapy [thesis]. Brisbane (Australia): Queensland University of Technology; 2003.
  15. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: A new approach to 3D dosimetry by MRI. J Magn Reson Imaging 1993;11:253-258. https://doi.org/10.1016/0730-725X(93)90030-H
  16. Sellakumar P, Jebaseelan J, Samuel E. Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-Ray CT. Radiat Meas. 2010;45:92-97. https://doi.org/10.1016/j.radmeas.2009.11.003
  17. Yuan-Jen C, Jing-Quan L, Bor-Tsung H, Chun-Hsu Y, Chin-Hsing C. Dose evaluation of an NIPAM polymer gel dosimeter using gamma index. Radiat Phys Chem. 2014;104:180-187. https://doi.org/10.1016/j.radphyschem.2013.11.031
  18. Oldham M, Siewerdsen JH, Shetty A, Jaffray DA. High resolution gel-dosimetry by optical-Ct and MR scanning. Med Phys. 2001;28(7):1436-1445. https://doi.org/10.1118/1.1380430
  19. Chac n D, Vedelago J, Strumia MC, Valente M, Mattea F. Raman spectroscopy as a tool to evaluate oxygen effects on the response of polymer gel dosimetry. Appl Radiat Isot. 2019;150:43-52. https://doi.org/10.1016/j.apradiso.2019.05.006
  20. Baldock C, Rintoul L, Keevil SF, Pope JM, George GA. Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Med Phys. 1998;43: 3617-3627. https://doi.org/10.1088/0031-9155/43/12/017
  21. Natanasabapathi G, Warmington L, Watanabe Y. Evaluation of two calibration methods for MRI-based polymer gel dosimetry. Appl Radiat Isot. 2021;174: 109754. https://doi.org/10.1016/j.apradiso.2021.109754
  22. Adliene D, Gabrielis Urbonavicius B, Laurikaitiene J, Puiso J. New application of polymer gels in medical radiation dosimetry: plasmonic sensors. Radiat Phys Chem. 2020;168:108609. https://doi.org/10.1016/j.radphyschem.2019.108609
  23. Mahmoodi A, Tavakoli-Anbaran H. Measurement of absorbed dose in normoxic polymer gel and study of gold nanoparticles configuration effects. J Radiat Saf Meas. 2019;7(2):35-42 (In Persian). https://doi.org/10.22052/7.2.35
  24. Jarrah I, Radaideh MI, Kozlowski T, Uddin R. Determination and validation of photon energy absorption buildup factor in human tissues using monte carlo simulation. Radiat Phys Chem. 2019;160: 15-25. https://doi.org/10.1016/j.radphyschem.2019.03.008
  25. Singh S, Kumar A, Singh C, Singh Thind K, Mudahar GS. Effect of finite sample dimensioms and total scatter acceptance angle on the gamma ray buildup factor. Ann Nucl Energy 2008;35:2414-2416. https://doi.org/10.1016/j.anucene.2008.08.008
  26. Ekinci N, Kavaz E, zdem r Y. A study of The energy absorption and exposure buildup factors of some anti-inflammatory drugs. Appl Radiat Isot. 2014;90:265-273. https://doi.org/10.1016/j.apradiso.2014.05.003
  27. Kavaz E, Ahmadishadbad N, Photon buildup factors of some chemotherapy drugs. Biomed Pharmacother. 2015;69:34-41. https://doi.org/10.1016/j.biopha.2014.10.031
  28. Kilicoglu O, Tekin HO. Bioactive glasses with additive: Behavior characterization against nuclear radiation and determination of buildup factors. Ceram Int. 2020;46:10779-10787. https://doi.org/10.1016/j.ceramint.2020.01.088
  29. Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat Phys Chem. 2017;130: 335-342. https://doi.org/10.1016/j.radphyschem.2016.09.019
  30. Obaid SS, Sayyed MI, Gaikwad DK, Pawar PP. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat Phys Chem. 2018;148:86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  31. Mahmoud KA, El-Agwany FI, Rammah YS, Tashlykov OL. Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study. J Non-Cryst Solids. 2020;541:120110. https://doi.org/10.1016/j.jnoncrysol.2020.120110
  32. Alda'ajeh MM, Sharaf JM, Saleh HH, Hamideen MS. Determination of buildup factors for some human tissues using both MCNP5 and Phy-X/PSD. Nucl Eng Technol. 2023;55:4426-4430. https://doi.org/10.1016/j.net.2023.08.025
  33. Sabry N, Zahran HY, Yousef EIS, Algarni H, Umar A, Albargi HB, et al. Gamma-ray attenuation, fast neutron removal cross-section and build up factor of Cu2MnGe[S,Se,Te]4 semiconductor compounds: Novel Radiat Phys Chem. 2021;179:109248. https://doi.org/10.1016/j.radphyschem.2020.109248
  34. Kulwinder Singh M. Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients. Nucl Instrum Methods Phys Res A or NIM A 2018;877:1-8. https://doi.org/10.1016/j.nima.2017.08.047
  35. Pathak V. To study buildup factor in concrete. Neuroquantology 2022;20:4217-4226. https://doi.org/10.48047/NQ.2022.20.7.NQ33513
  36. Knoll GF. Radiation detection and measurement. 4th ed. Hoboken (NJ): John Wiley & Sons; 2010.
  37. Kaur S, Karol V, Kumar P, Kaur G, Sharma P, Saroa A, et al. Energy build-up factors estimation for BaZr0.10Ti0.90O3, Ba0.90La0.10TiO3 and Ba0.90La0.10Zr0.10Ti0.90O3 ceramics in shielding applications. Nucl Eng Technol. 2024;56:1822-1829. https://doi.org/10.1016/j.net.2023.12.039
  38. Singh PS, Singh PT, Kaur P. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann Nucl Energy 2008;35:1093-1097. https://doi.org/10.1016/j.anucene.2007.10.007
  39. Alavian H, Tavakoli-Anbaran. Study on effect of detector type in estimating buildup factor of gamma-rays by monte carlo simulation based on variance reduction. J Radiat Saf Meas. 2018;6(4):65-79 (In Persian). https://doi.org/10.22052/6.4.65
  40. Tsoulfanidis N, Landsberger S. Measurement and detection of radiation. 3rd ed. Boca Raton (FL): Taylor & Francis; 2010.
  41. De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, et al. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol. 2002; 47: 3441–3463. https://doi.org/10.1088/0031-9155/47/19/301
  42. Venning AJ, Brindha S, Hill B, Baldock C. Preliminary study of a normoxic PAG gel dosimeter with tetrakis (hydroxymethyl) phosphonium chloride as an anti-oxidant. J Phys: Conf Ser. 2004;3:155–158. https://doi.org/10.1088/1742-6596/3/1/016
  43. XCOM: Photon Cross Sections Database [Internet]. Gaithersburg (MD): National Institute of Standards and Technology (NIST); [cited 2025 May 31]. Available from: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.

 

 

تحت نظارت وف ایرانی