اصلاح فیزیکوشیمیایی سطح پلی‌تترافلوئورواتیلن با استفاده از پلاسما‌ی سرد فشار اتمسفری تخلیه سد دی‌الکتریک سطحی: ارتقاء ترشوندگی و زبری نانومقیاس

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

چکیده

مقدمه و اهداف: پلی‌تترافلوئورواتیلن، به‌عنوان یک پلیمر مهندسی پرکاربرد در صنعت شناخته می‌شود. بااین‌حال، ماهیت آب‌گریز و انرژی سطحی پایین آن، چالش‌های جدی در زمینه چسبندگی و پوشش‌پذیری ایجاد کرده است. در این پژوهش، از پلاسمای تخلیه سد دی‌الکتریک سطحی با ساختار مشبک بهره گرفته شد تا با ایجاد تغییرات فیزیکی و شیمیایی در سطح پلی‌تترافلوئورواتیلن، ویژگی‌های آن بهبود یابد. 
مواد و روش‌ها: برای ارزیابی اثر فرآیند پلاسمادهی، زاویه تماس قطره آب روی سطح نمونه‌ها اندازه‌گیری شد. علاوه‌براین، برای بررسی تغییرات مورفولوژیکی سطح، تصاویر میکروسکوپی نیروی اتمی مورد تحلیل قرار گرفتند و تغییرات شیمیایی ایجادشده روی سطح با استفاده از طیف‌سنجی مادون قرمز تبدیل فوریه مورد مطالعه قرار گرفت.
یافته‌ها: نتایج حاکی از کاهش چشمگیر زاویه تماس، از حدود 98 درجه به 35 درجه است که بهبود 64 درصدی زاویه تماس سطح با آب را نشان می‌دهد. این یافته که بیانگر افزایش قابل توجه آب‌دوستی و انرژی سطحی است، قابل مقایسه و در بسیاری از موارد بهتر از نتایج مطالعات پیشین در این زمینه است. همچنین، پلاسمادهی منجر به افزایش زبری سطح و شکل‌گیری ناهمواری‌های نانومقیاس در سطح پلی‌تترافلوئورواتیلن شده است. این تغییرات ساختاری علاوه بر بهبود ترشوندگی، تأثیر بسزایی در افزایش قابلیت چسبندگی این پلیمر دارد.
نتیجه‌‌گیری: نتایج نشان می‌دهد که اصلاح سطحی پلی‌تترافلوئورواتیلن با پلاسما‌ی تخلیه سد دی‌الکتریک سطحی، روشی مؤثر، زیست‌سازگار و مقرون‌به‌صرفه برای افزایش عملکرد سطحی این پلیمر است که می‌تواند مسیرهای جدیدی را برای کاربردهای گسترده‌تر آن در حوزه‌هایی همچون مهندسی سطح، زیست‌مواد و میکروالکترونیک هموار سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Physicochemical Modification of Polytetrafluoroethylene Surface Using Cold Atmospheric Pressure Surface Dielectric Barrier Discharge Plasma: Enhancing Wettability and Nanoscale Roughness

نویسندگان [English]

  • Soolmaz Jamali
  • Ameneh Kargarian
Plasma and Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
چکیده [English]

Introduction and Objectives: Polytetrafluoroethylene is known as a widely used engineering polymer in industry. However, its hydrophobic nature and very low surface energy causes serious challenges in the adhesion and coating. In this study, in order to modify the surface of this polymer, the surface dielectric barrier discharge plasma processing with grid structure was used to improve its properties by creating physical and chemical changes on the surface of polytetrafluoroethylene.
Materials and Methods: The contact angle of the water droplet on the surface of the samples was measured before and after treatment to evaluate the effect of the plasma processing. In addition, Atomic Force Microscope and Fourier Transform Infrared spectroscopy analysis were utilized to investigate the surface morphological and chemical changes.
Results: The results indicated a significant decrease in the contact angle from about 98 degrees to 35 degrees, indicating a 64% improvement in the surface contact angle with water. This finding which represents a significant increase in hydrophilicity and surface energy, is comparable and in many cases better than the results of previous studies in this field. Plasma processing led to an increase in surface roughness and the formation of nanoscale asperities on the surface of the polytetrafluoroethylene. These structural changes led to improved wettability and adhesion of this polymer.
Conclusions: The findings of this study illustrate that surface modification of polytetrafluoroethylene using surface dielectric barrier discharge plasma processing is an effective, fast, biocompatible, and cost-effective method for enhancing the surface functionality of this polymer. This method can pave new paths for its broader applications in areas such as surface engineering, biomaterials, and microelectronics.

کلیدواژه‌ها [English]

  • Surface dielectric barrier discharge (SDBD)
  • Polytetrafluoroethylene polymer
  • Surface modification
  • Contact angle
  • Surface energy
  • Surface roughness
  1. Liang RQ, Su XB, Wu QC, Fang F. Study of the surface-modified Teflon/ceramics complex material treated by microwave plasma with XPS analysis. Surf Coat Tech. 2000; 131(1-3): 294-299. https://doi.org/10.1016/S0257-8972(00)00795-7
  2. Biederman H, Zeuner M, Zalman J, Bı́lková P, Slavı́nská D, Stelmasuk V, Boldyreva A. Rf magnetron sputtering of polytetrafluoroethylene under various conditions. Thin Solid Films. 2001;392(2): 208-13. https://doi.org/10.1016/S0040-6090(01)01029-X
  3. Yu QS, Reddy CM, Meives MF, Yasuda HK. Surface modification of poly (tetrafluoroethylene) by a low‐temperature cascade arc torch and radio‐frequency J Polym Sci A Polym Chem. 1999;37(23):4432-41. https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23%3C4432::AID-POLA20%3E3.0.CO;2-J
  4. Liu C, Fairhurst RG, Ren L, Green SM, Tong J, Arnell Co-deposition of titanium/polytetrafluoroethylene films by unbalanced magnetron sputtering. Surf Coat Tech. 2002;149(2-3):143-50. https://doi.org/10.1016/S0257-8972(01)01443-8
  5. Razmjou A, Shirani E. Improvement of Polypropylene Biological Interactions by using Superhydrophobic Surface Modification. J Adv Mater Eng (Esteghlal) 2022;36(4):127-40. https://doi.org/10.29252/jame.36.4.127 (In persian)
  6. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta B At Spectrosc. 2006;61(1):2-30. https://doi.org/10.1016/j.sab.2005.10.003
  7. Winter J, Brandenburg R, Weltmann KD. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24(6):064001. https://doi.org/10.1088/0963-0252/24/6/064001
  8. Domonkos M, Tichá P, Trejbal J, Demo P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl Sci. 2021;11(11):4809. https://doi.org/10.3390/app11114809
  9. Iqbal M, Dinh DK, Abbas Q, Imran M, Sattar H, Ul Ahmad A. Controlled surface wettability by plasma polymer surface modification. Surf. 2019;2(2):349-71. https://doi.org/10.3390/surfaces2020026
  10. Bertin M, Leitao EM, Bickerton S, Verbeek CJ. A review of polymer surface modification by cold plasmas toward bulk functionalization. Plasma Process Polym. 2024;21(5):2300208. https://doi.org/10.1002/ppap.202300208
  11. Saka C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Crit Rev Anal Chem. 2018;48(1):1-4. https://doi.org/10.1080/10408347.2017.1356699
  12. Bhatt P, Kumar V, Subramaniyan V, Nagarajan K, Sekar M, Chinni SV, Ramachawolran G. Plasma modification techniques for natural polymer-based drug delivery systems. Pharmaceutics 2023;15(8):2066. https://doi.org/10.3390/pharmaceutics15082066
  13. Khan MM, Asrafali SP, Periyasamy T. Synthesis, Morphology, and Biomedical Applications of Plasma-Based Polymers: Recent Trends and Advances. Polymers 2024;16(19):2701. https://doi.org/10.3390/polym16192701
  14. Yasuda H, Hsu T. Some aspects of plasma polymerization investigated by pulsed RF discharge. J Polym Sci Polym. Chem Ed. 1977;15(1):81-97. https://doi.org/10.1002/pol.1977.170150109
  15. Choudhury AJ, Chutia J, Barve SA, Kakati H, Pal AR, Mithal N, Kishore R, Pandey M, Patil DS. Studies of physical and chemical properties of styrene-based plasma polymer films deposited by radiofrequency Ar/styrene glow discharge. Prog Org Coat. 2011;70(2-3): 75-82. https://doi.org/10.1016/j.porgcoat.2010.10.006
  16. Zhang L, He X, Chen G, Wang T, Tang Y, He Z. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films. Appl Surf Sci. 2016;366:499-505. https://doi.org/10.1016/j.apsusc.2016.01.100
  17. Alancherry S, Bazaka K, Jacob MV. RF plasma polymerization of orange oil and characterization of the polymer thin films. J Polym Environ. 2018;26:2925-33. https://doi.org/10.1007/s10924-018-1178-7
  18. Lakshmi GB, Dhillon A, Siddiqui AM, Zulfequar M, Avasthi DK. RF-plasma polymerization and characterization of polyaniline. Eur Polym J. 2009;45(10):2873-7. https://doi.org/10.1016/j.eurpolymj.2009.06.027
  19. Wang Y, Zhang J, Shen X, Shi C, Wu J, Sun L. Dispersion investigation of TiO2 nanoparticles coated by pulsed RF plasma polymer. Mater Chem Phys. 2006;98(2-3):217-24. https://doi.org/10.1016/j.matchemphys.2005.09.010
  20. Ji M, Benyahia L, Poncin‐Epaillard F. Plasma polymer for enhancing adhesion bonds of a metal/elastomer assembly. Plasma Process Polym. 2021;18(9):2100035. https://doi.org/10.1002/ppap.202100035
  21. Fleischer M, Kelar Tučeková Z, Galmiz O, Baťková E, Plšek T, Kolářová T, Kováčik D, Kelar J. Plasma Treatment of Large-Area Polymer Substrates for the Enhanced Adhesion of UV–Digital Printing. Nanomaterials 2024;14(5):426. https://doi.org/10.3390/nano14050426
  22. Levchenko I, Xu S, Baranov O, Bazaka O, Ivanova EP, Bazaka K. Plasma and polymers: Recent progress and trends. Molecules 2021;26(13):4091. https://doi.org/10.3390/molecules26134091
  23. Bakhshzadmahmoudi M, Jamali S, Ahmadi E. Wettability modification of polystyrene surface by cold atmospheric pressure plasma jet. Colloid Polym Sci. 2022;300(2):103-10. https://link.springer.com/article/10.1007%2Fs00396-021-04928-0
  24. Ji Z, Zhao Y, Zhang M, Li X, Li H. Surface modification of ETFE membrane and PTFE membrane by atmospheric DBD plasma. Membranes 2022;12(5):510. https://doi.org/10.3390/membranes12050510
  25. Fang Z, Hao L, Yang H, Xie X, Qiu Y, Edmund K. Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air. Appl Surf Sci. 2009;255(16):7279-85. https://doi.org/10.1016/j.apsusc.2009.03.078
  26. Liu CZ, Wu JQ, Ren LQ, Tong J, Li JQ, Cui N, Brown NM, Meenan BJ. Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater Chem Phys. 2004;85(2-3):340-6. https://doi.org/10.1016/j.matchemphys.2004.01.026
  27. Asrafali SP, Periyasamy T, Kim SC. Rapid transformation in wetting properties of PTFE membrane using plasma treatment. Polymers 2023; 15(19):3874. https://doi.org/10.3390/polym15193874
  28. Shao XJ, Zhang GJ, Zhan JY, Xu GM. Research on surface modification of polytetrafluoroethylene coupled with argon dielectric barrier discharge plasma jet characteristics. IEEE Trans Plasma Sci. 2011; 39(11):3095-102. https://doi.org/10.1109/TPS.2011.2160569
  29. Yablokov MY, Kuznetsov AA. Electret properties and wettability of polymer materials treated by DC glow discharge. Phys Compex Systems. 2024;5(4):202-4. https://www.doi.org/10.33910/2687-153X-2024-5-4-202-204
  30. Fang Z, Qiu Y, Luo Y. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air. J Phys D Appl Phys. 2003;36(23):2980. https://doi.org/10.1088/0022-3727/36/23/019
  31. Wan J, Wang S, Song M, Jia X, Yang J. Plasma‐induced direct‐grafting on polytetrafluoroethylene films by quasi‐glow discharge at atmospheric pressure. Plasma Process Polym. 2009;6(12):825-30. https://doi.org/10.1002/ppap.200900060
  32. Noh JH, Baik HK, Noh I, Park JC, Lee IS. Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application. Surf Coat Technol. 2007;201(9-11):5097-101. https://doi.org/10.1016/j.surfcoat.2006.07.223
  33. Baldanov BB, Semenov AP, Ranzhurov TV. Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets. J Surf Invest: X-Ray Synch Neutron Tech. 2024;18(5):1271-5. https://doi.org/10.1134/S1027451024701143
  34. Liu K, Lei J, Zheng Z, Zhu Z, Liu S. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: The relationship of hydrophilicity, ambient humidity and plasma parameters. Appl Surf Sci. 2018;458:183-90. https://doi.org/10.1016/j.apsusc.2018.07.061
  35. Huang C, Ma WC, Tsai CY, Hou WT, Juang RS. Surface modification of polytetrafluoroethylene membranes by radio frequency methane/nitrogen mixture plasma polymerization. Surf Coat Technol. 2013;231:42-6. https://doi.org/10.1016/j.surfcoat.2012.03.005
  36. Hai W, Hi T, Shimizu K, Yajima T. Preparation of a super hydrophilic polytetrafluoroethylene surface using a gaseous ammonia-water low-temperature plasma. J Photopolym Sci Technol. 2015;28(3):479-83. https://doi.org/10.2494/photopolymer.28.479
  37. López-García J, Cupessala F, Humpolíček P, Lehocký M. Physical and morphological changes of poly (tetrafluoroethylene) after using non-thermal plasma-treatments. Materials 2018;11(10):2013. https://doi.org/10.3390/ma11102013
  38. Fitriani SW, Ikeda S, Tani M, Yajima H, Furuta H, Hatta A. Hydrophilization of polytetrafluoroethylene using an atmospheric-pressure plasma of argon gas with water–ethanol vapor. Mater Chem Phys. 2022; 282:125974. https://doi.org/10.1016/j.matchemphys.2022.125974
  39. Pavliňák D, Galmiz O, Zemánek M, Brablec A, Čech J, Černák M. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges. Appl Phys Lett. 2014;105(15). https://doi.org/10.1063/1.4898134
  40. Arbi AW, Santjojo DD, Masruroh M. Analysis of Dielectric Barrier Discharge (DBD) Plasma System with Variation Flowrate to Increase Wettability Polytetrafluoroethylene (PTFE). Kappa J. 2025; 9(1):88-92. https://doi.org/10.29408/kpj.v9i1.29480
  41. Liu CZ, Wu JQ, Ren LQ, Tong J, Li JQ, Cui N, Brown NM, Meenan BJ. Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater Chem Phys. 2004;85(2-3):340-6. https://doi.org/10.1016/j.matchemphys.2004.01.026
  42. Prysiazhnyi V, Kratochvil J, Stranak V. Tailored wettability of plasma polymers made of C–F, C–H, and N–H. Plasma Process Polym. 2019;16(12): 1900076. https://doi.org/10.1002/ppap.201900076

 

 

 

تحت نظارت وف ایرانی