بررسی مبتنی بر شبیه‌سازی مونت کارلو از کامپوزیت‌های اپوکسی/دیسپروزیم برای محافظ اشعه ‌ایکس و پرتو گاما در محدوده‌های انرژی پزشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه امام حسین(ع)، تهران، ایران

چکیده

مقدمه و اهداف: حفاظت در برابر پرتوهای یونیزان، برای کاهش اثرات مضر تابش بر بدن ضروری است. سرب به‌دلیل چگالی بالا به‌طور سنتی به‌عنوان ماده حفاظتی استفاده شده است، اما سمیت و محدودیت‌های فیزیکی آن باعث شده است که به دنبال جایگزین‌های ایمن‌تر باشیم. این مطالعه خواص تضعیف پرتو گاما و اشعه ‌ایکس در کامپوزیت‌های پلیمری حاوی افزودنی‌های غیرسمی را بررسی می‌کند و عملکرد آن‌ها را در محدوده انرژی ۱۵ کیلوالکترون‌ولت تا ۱۰ مگاالکترون‌ولت ارزیابی می‌کند.
مواد و روش‌ها: با استفاده از ابزار شبیه‌سازی Geant4، کارایی حفاظتی کامپوزیت‌های پلیمری حاوی اکسید ایتریم، اکسید دیسپروزیم و دی‌اکسید زیرکونیوم در غلظت‌های مختلف مورد بررسی قرار گرفت. نرخ تضعیف و خواص ترابرد پرتو گاما و اشعه ایکس در این کامپوزیت‌ها به صورت منسجم ارزیابی شد.
یافته‌ها: نرخ تضعیف به‌طور یکنواخت با ضخامت کاهش می‌یابد، اما برای Epoxy-5 به‌طور مداوم در بالاترین حد و برای Epoxy-1 در پایین‌ترین حد باقی می‌ماند. در زیر 0/5 مگاالکترون‌ولت، عملکرد وابسته به عدد اتمی است (اثر فوتوالکتریک)، اما بالاتر از این انرژی، همه نمونه‌ها به‌دلیل غلبه پراکندگی کامپتون همگرا می‌شوند. در 0/662 مگاالکترون‌ولت، میانگین انرژی منتقل شده به الکترون‌های ثانویه از ۲۹۰ کیلوالکترون‌ولت فراتر می‌رود، مقداری که در همه کامپوزیت‌ها ثابت است و ثابت می‌کند که رسوب انرژی مستقل از ماده است.
نتیجه‌گیری: ترکیب افزودنی با افزایش احتمال برهمکنش، به ویژه در زیر 0/5 مگاالکترون‌ولت، به‌طور قابل‌توجهی محافظت را افزایش می‌دهد. Epoxy-5 برای تضعیف طیف گسترده برتر است، درحالی‌که Epoxy-1 یک راه‌حل موثر و سبک برای محافظت از فوتون‌های پرانرژی است که در آن پراکندگی کامپتون مزیت پرکننده‌های با عدد اتمی بالا را به‌حداقل می‌رساند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monte Carlo Simulation-Based Investigation of Epoxy/Dysprosium Composites for X-ray and Gamma-ray Shielding Across Medicine Energy Ranges

نویسندگان [English]

  • Mohammadreza Alipoor
  • Mahdi Eshghi
  • Ruhollah Razavi
Department of Physics, Imam Hossein University, Tehran, Iran
چکیده [English]

Introduction and Objectives: Ionizing radiation protection is essential for minimizing the harmful effects of radiation exposure. While lead has traditionally been used as a shielding material due to its high density, its toxicity and physical limitations have driven the search for safer alternatives. This study investigates the gamma-ray attenuation properties of polymer composites containing non-toxic additives, focusing on their performance in the energy range of 15 keV to 10 MeV.
Methods and Materials: Using the Geant4 simulation toolkit, the shielding efficiency of polymer composites incorporating yttrium oxide, dysprosium oxide, and zirconium dioxide was analyzed in varying concentrations. The attenuation rates and gamma-ray transmission properties of these composites were systematically evaluated.
Results: The attenuation rate (intensity fraction decrease) drops uniformly with thickness, but remains consistently highest for Epoxy-5 and lowest for Epoxy-1. Below 0.5 MeV, performance is atomic number-dependent (photoelectric effect), but above this energy, all samples converge due to Compton scattering dominance. At 0.662 MeV, the average energy transferred to secondary electrons exceeds 290 keV, a value consistent across all composites, proving energy deposition is material independent.
Conclusion: Additive composition critically boosts shielding by increasing interaction probability, especially below 0.5 MeV. Epoxy-5 is superior for broad-spectrum attenuation, while Epoxy-1 is an effective, lightweight solution for shielding high-energy photons (>0.5 MeV) where Compton scattering minimizes the advantage of high-Z fillers.

کلیدواژه‌ها [English]

  • Gamma ray
  • Epoxy
  • Shielding
  • Polymer-Composites
  • Geant4
  1. Karmakar A, Wang J, Prinzie J, De Smedt V, Leroux P. A review of semiconductor based ionising radiation sensors used in harsh radiation environments and their applications. Radiation 2021;1(3):194–217. https://doi.org/10.3390/radiation1030018
  2. Kaewjaeng S, Kothan S, Chaiphaksa W, Chanthima N, Rajaramakrishna R, Kim HJ, et al. High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiat Phys Chem. 2019;160:41–7. https://doi.org/10.1016/j.radphyschem.2019.03.018
  3. Poltabtim W, Wimolmala E, Markpin T, Sombatsompop N, Rosarpitak V, Saenboonruang K. X-ray shielding, mechanical, physical, and water absorption properties of Wood/PVC composites containing bismuth oxide. Polymers 2021;13(13): 2212. https://doi.org/10.3390/polym13132212
  4. Timakova RT, Iliukhin RV, Iliukhina IV. Modern trends in the development of nuclear power: from environmental friendliness to safe utilitarianism. IOP Conf Ser Earth Environ Sci. 2022;979(1):012172. https://doi.org/10.1088/1755-1315/979/1/012172
  5. Bustreo C, Giuliani U, Maggio D, Zollino G. How fusion power can contribute to a fully decarbonized European power mix after 2050. Fusion Eng Des. 2019;146:2189–93. https://doi.org/10.1016/j.fusengdes.2019.03.150
  6. Aldawood S, Asemi NN, Kassim H, Aziz AA, Saeed WS, Al-Odayni AB. Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. J Radiat Res Appl Sci. 2023;17(1):100793. https://doi.org/10.1016/j.jrras.2023.100793
  7. Rammah YS, Askin A, Abouhaswa AS, El-Agawany FI, Sayyed MI. Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Appl Phys A 2019;125(8). https://doi.org/10.1007/s00339-019-2831-2
  8. Chikkegowda A, Raj LA, Mohan SB, Krishnaveni S. Study on polymer composites with glass for gamma ray shielding. Radiat Prot Dosim. 2024;200(11–12):1233–6. https://doi.org/10.1093/rpd/ncae111
  9. Alipoor MR, Eshghi M. Nickel/Multiwalled carbon nanotube composites as Gamma-Ray shielding. Nano 2024;19(06). https://doi.org/10.1142/s1793292024500279
  10. Özdoğan H, Üncü YA, Akman F, Polat H, Kaçal MR. Detailed analysis of Gamma-Shielding characteristics of ternary composites using experimental, theoretical and Monte Carlo simulation methods. Polymers 2024; 16(13):1778. https://doi.org/10.3390/polym16131778
  11. Dong C, Mao X, Liang Q, Wang M, Zhang M, Chen J, et al. Poly (methyl methacrylate)/hyperbranched polysiloxane hybrid prepared by gamma‐radiation polymerization: Thermal stability, optical transparence, and UV shielding. J Appl Polym Sci. 2023;141(7):e54942. https://doi.org/10.1002/app.54942
  12. More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 2021;19(3):2057–2090. https://doi.org/10.1007/s10311-021-01189-9
  13. Abualroos NJ, Idris MI, Ibrahim H, Zainon R. Physical, mechanical, and microstructural characterization of tungsten carbide-based polymeric composites for radiation shielding application. Sci Rep. 2024;14: 1375. https://doi.org/10.1038/s41598023-49842-3
  14. Gilys L, Griškonis E, Griškevičius P, Adlienė D. Lead free multilayered polymer composites for radiation shielding. Polymers 2022;14(9):1696. https://doi.org/3390/polym14091696
  15. Abdolahzadeh T, Morshedian J, Ahmadi S. Preparation and characterization of nano WO3/Bi2O3/GO and BaSO4/GO dispersed HDPE composites for X-ray shielding application. Polyolefins J. 2022;9(2):73-83. https://doi.org/10.22063/poj.2022.3009.1201
  16. Magnere SM, Toledo EA, Yazdani‐Pedram M, Fuentealba P, Contreras‐Soto A, Bascuñan‐Heredia A, et al. High performance fluoroelastomer composites filled with graphite and/or bismuth oxide for applications in gamma‐ray shielding. Polym Compos. 2024;45(8):6901-6913. https://doi.org/10.1002/pc.28237
  17. El‐Khatib AM, Doma AS, Abbass MM, Hassan MF, Abbas MI, El‐Latif MMA, et al. Enhancing gamma radiation shielding properties of iron metal and natural rubber composites. J Appl Polym Sci. 2024;141(30): e55690. https://doi.org/10.1002/app.55690
  18. Alanazi S, Hanfi M, Marashdeh MW, Aljaafreh MJ, Mahmoud KA. Evaluating the effects of metallic waste on the structural and Gamma-Ray shielding properties of epoxy composites. Polymers 2024;16 (10):1415. https://doi.org/10.3390/polym16101415
  19. Álvarez-Cortez G, Molina F, Urbano BF, Dahrouch M, Santana MH, Manchado M a. L, et al. Design and study of novel composites based on EPDM rubber containing bismuth (III) oxide and graphene nanoplatelets for gamma radiation shielding. Polymers 2024;16(5):633. https://doi.org/3390/polym16050633
  20. Dejangah M, Ghojavand M, Poursalehi R, gholipour Peyvandi R. Study gamma radiation protection properties of silicon rubber-bismuth oxide nanocomposites: Synthesis, characterization and simulation. J Radiat Saf Meas. 2016;5(4):37-46. https://doi.org/10.22052/4.4.37
  21. Hashemi SA, Tajik M, Asadi Amirabadi E. Design and fabrication of flexible polymer radiation shielding composite for mixed gamma‐neutron fields. J Radiat Saf Meas. 2019;8(2):25-34. https://doi.org/10.22052/7.2.25
  22. Arjmand S, Tavoosi M. Development of Al-Ti-N composite coatings on commercially pure Ti surface by tungsten inert gas process. J Adv Mater Eng. 2022;39(3):73-98. https://doi.org/10.47176/jame.39.3.21681
  23. Antor RI, Bithi AM, Nahin AM. Variation in mechanical properties of polymer composites with reinforcements from different animal origins—a comprehensive review. Int J Polym Sci. 2025;2025: 4184239. https://doi.org/10.1155/ijps/4184239
  24. Uyor UO, Popoola PA, Popoola OM. Enhanced mechanical and dynamic mechanical properties of polymer nanocomposites containing carbon nanotubes decorated with barium titanate. Polym Polym Compos. 2022:30. https://doi.org/10.1177/09673911221100160
  25. Kuan HTN, Tan MY, Shen Y, Yahya MY. Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Compos Adv Mater. 2021;30. https://doi.org/10.1177/26349833211007502
  26. Yin X, Feng W, Cheng S, Huang Q, Zou X, Wang Z, et al. Chemically bonding inorganic fillers with polymer to achieve ultra-stable solid-state sodium batteries. J Colloid Interface Sci. 2023;648:855-864. https://doi.org/10.1016/j.jcis.2023.06.064
  27. Phiri R, Mavinkere Rangappa S, Siengchin S, Oladijo OP, Ozbakkaloglu T. Advances in lightweight composite structures and manufacturing technologies: A comprehensive review. Heliyon 2024;10(21): e39661. https://doi.org/10.1016/j.heliyon.2024.e39661
  28. Ahmed EM, Elzelaky AA, El-Ghamaz NA, Youssif MI. Electrical conductivity and significant radiation shielding properties of B2O3.Pb3O4.ZnOY2O3 Radiat Phys Chem. 2023;216:111457. https://doi.org/10.1016/j.radphyschem.2023.111457
  29. Abulyazied DE, Issa SAM, Saudi HA, Abomostafa HM, Zakaly HMH. Dysprosium-Enriched Polymer Nanocomposites: Assessing radiation shielding and optical properties. Opt Mater. 2024;153:115604. https://doi.org/10.1016/j.optmat.2024.115604
  30. Reda AM, Ahmed RM, Alsawah MA, El-Sabbagh SH, Abd AE, Kansouh WA. Radiation shielding effectiveness, structural, and mechanical properties of HDPE/B4C composites reinforced with Fe2O3-Al2O3-Al-Fe fillers. Phys Scr. 2024;99(3):035308. https://doi.org/10.1088/1402-4896/ad29dd
  31. Alipoor M, Eshghi M. Heavy element-enhanced polymer composites for gamma and neutron radiation shielding: A simulation study. J Metall Mater Eng. 2025;36(3):65-84. https://doi.org/10.22067/jmme.2025.89902.1161
  32. Sallam OI, Rammah YS, Nabil IM, El-Seidy AMA. Enhanced optical and structural traits of irradiated lead borate glasses via Ce3+ and Dy3+ ions with studying Radiation shielding performance. Sci Rep. 2024;14(1): 24478. https://doi.org/10.1038/s41598-024-73892-w
  33. Putra OA, Faniandari1 S, Syamputra DNI, Fahmi M, Yutomo EB. Effect of ZrO2 on radiation shielding properties of xZrO2-based glasses. Int J Radiat Res. 2024;22(2):349-355. https://doi.org/10.52403/ijrr.20241110
  34. Rahmani Vareki M, Eshghi M, Alipoor M. Investigating the role of bismuth oxide and gadolinium oxide as an enhancer of the gamma shielding ability of polymer compounds based on unsaturated resin using the Monte Carlo simulation Geant4 tool. J Adv Mater Eng. 2024;43(4):85-108. https://doi.org/10.47176/jame.43.4.1071

 

 

 

تحت نظارت وف ایرانی