تعیین ضریب بزرگنمایی جوش در اتصالات لوله‌ای به وسیله شبکه‌های عصبی مصنوعی

نویسندگان

چکیده

در اتصالات لوله ای جوشی زمانی که عمق ترک خستگی کمتر از 20 درصد ضخامت جدارۀ عضو اصلی است، رشد ترک بیش از هر چیز تحت اثر هندسۀ جوش در اتصال است. از این رو حل اتصال T شکل و ضریب بزرگنمایی جوش (Mk) ابزار مناسبی برای محاسبۀ سرعت رشد ترک در این محدوده اند. در این تحقیق توانایی شبکه های عصبی مصنوعی برای تعیین Mk در اتصالات T شکل مورد آزمون قرار گرفته است. چهار شبکه از نوع پرسپترون چندلایه (MLP) طراحی و آموزش داده شده اند تا مقادیر Mk را در عمیقترین نقطۀ ترک و نقاط انتهایی آنها تحت تنشهای غشایی و خمشی تخمین بزنند. داده های استفاده شده برای آموزش و آزمون شبکه ها از داده های معتبر اجزای محدود استخراج شده است. مقایسۀ بین نتایج به دست آمده از شبکه ها و جدیدترین روابط منتشر شده برای محاسبۀ Mk نشان دهندۀ قابلیت بالای شبکه-های عصبی برای استفاده در این زمینه است.

عنوان مقاله [English]

Evaluating Weld Magnification Factor in Welded Tubular Joints Using Artifitial Neural Networks

نویسندگان [English]

  • A. Fathi
  • A. A. Aghakuchak
  • and Gh. A. Montazer
چکیده [English]

In welded tubular joints, when the fatigue crack depth is less than 20% of chord wall thickness, the crack growing process is highly affected by weld geometry. Hence, T-butt solution and weld magnification factor (Mk) are applicable tools for evaluating the crack growth rate in this domain. In this research, the capability of Artificial Neural Network (ANN) for estimating the Mk of weld toe cracks in T-butt joints is investigated. Four Multi-Layer Perceptron (MLP) networks are designed and trained to predict the Mk in deepest point and ends of weld toe cracks under membrane and bending stresses. Training and testing data of networks are extracted from a reputable resource on finite element modeling. Comparison of the results obtained and those from the most recently published equations shows that using ANN seems to be very beneficial in this field

کلیدواژه‌ها [English]

  • Tubular joint
  • Offshore platforms
  • Fatigue crack
  • Linear elastic fracture mechanics
  • Weld magnification factor
  • artificial neural networks

تحت نظارت وف ایرانی